The heat capacity and the specific heat
Answer:
The correct answer is B
Explanation:
To calculate the acceleration we must use Newton's second law
F = m a
a = F / m
To calculate the force we use the defined pressure and the radiation pressure for an absorbent surface
P = I / c absorbent surface
P = F / A
F / A = I / c
F = I A / c
The area of area of a circle is
A = π r²
We replace
F = I π r² / c
Let's calculate
F = 8.0 10⁻³ π (1.0 10⁻⁶)²/3 10⁸
F = 8.375 10⁻²³ N
Density is
ρ = m / V
m = ρ V
m = ρ (4/3 π r³)
m = 4500 (4/3 π (1 10⁻⁶)³)
m = 1,885 10⁻¹⁴ kg
Let's calculate the acceleration
a = 8.375 10⁻²³ / 1.885 10⁻¹⁴
a = 4.44 10⁻⁹ m/s² absorbent surface
The correct answer is B
Answer: The density of this piece of jewelry is 
Explanation:
To calculate the density, we use the equation:

Mass of piece of jewellery = 130.8 g
Density of piece of jewellery = ?
Volume of piece of jewellery =( 62.4-47.7 ) ml = 14.7 ml =

Putting values in above equation, we get:

Thus density of this piece of jewelry is 
Answer:
A) s = 796.38 m
B) t = 12.742 s
C) T = 25.484 s
Explanation:
A) First of all let's find the time it takes to get to maximum height using Newton's first equation of motion.
v = u + gt
u = 125 m/s
v = 0 m/s
g = 9.81 m/s²
Thus;
0 = 125 - 9.81(t)
g is negative because motion is against gravity. Thus;
9.81t = 125
t = 125/9.81
t = 12.742 s
Max height will be gotten from Newton's 2nd equation of motion;
s = ut + ½gt²
s = (125 × 12.742) + (½ × -9.81 × 12.742²)
s = 1592.75 - 796.37
s = 796.38 m
B) time to reach maximum height is;
t = u/g
t = 125/9.81
t = 12.742 s
C) Total time elapsed is;
T = 2u/g
T = 2 × 125/9.81
T = 25.484 s