The amount of space an objective takes up measures by volume.
<u>Explanation:</u>
Volume is a proportion of the measure of space, unfilled column that a substance or an item takes up. The essential SI unit to volume denotes in the (cubic meter), yet volumes might be estimated in cubic centimetres, and fluids might be estimated in liters (L) or milli-liters (mL). How the volume of matter is estimated relies upon its state. The fluid's volume is estimated with an estimating holder, for example, an estimating cup or graduated chamber.
The gas volume relies upon the volume of its holder: gases able to occupy anything that space is accessible to them. The occupied space of a routinely molded strong can be determined from its measurements. For instance, the rectangle’s volume strong is the result of its width, length, and stature. The volume of a sporadically molded strong can be estimated by the uprooting technique.
Answer:
i = 61 degree
Explanation:
Given,

Now, by the snell's law

Now,
Sin i / sin r = n 2 / n 1
sin i / sin r (45 - 24.09) = 2.45 / 1
i = 60.97 degree
The number of protons
number of neutrons=the mass number- number of protons
14-6=8
Answer:
ΔU = - 310.6 J (negative sign indicates decrease in internal energy)
W = 810.6 J
Explanation:
a.
Using first law of thermodynamics:
Q = ΔU + W
where,
Q = Heat Absorbed = 500 J
ΔU = Change in Internal Energy of Gas = ?
W = Work Done = PΔV =
P = Pressure = 2 atm = 202650 Pa
ΔV = Change in Volume = 10 L - 6 L = 4 L = 0.004 m³
Therefore,
Q = ΔU + PΔV
500 J = ΔU + (202650 Pa)(0.004 m³)
ΔU = 500 J - 810.6 J
<u>ΔU = - 310.6 J (negative sign indicates decrease in internal energy)</u>
<u></u>
b.
The work done can be simply calculated as:
W = PΔV
W = (202650 Pa)(0.004 m³)
<u>W = 810.6 J</u>
Answer:
Explanation:
3.4 m/s due North, -1.1 m/s due East