Answer:
t = 2.5 hours
Explanation:
given,
speed of the bike for t time= 18 mi/h
final speed of the bike after t time = 12 mi/h
total distance, D = 69 miles
total time, T= 4.5 hour
time for which speed of the bike is 18 mi/h = ?
we know distance = speed x time
now,
18 x t + 12 (4.5 - t) = 69
6 t + 54 = 69
6 t = 15
t = 2.5 hours
The bike was at the speed of 18 mi/h for 2.5 hours.
Answer:
v = 120 m/s
Explanation:
We are given;
earth's radius; r = 6.37 × 10^(6) m
Angular speed; ω = 2π/(24 × 3600) = 7.27 × 10^(-5) rad/s
Now, we want to find the speed of a point on the earth's surface located at 3/4 of the length of the arc between the equator and the pole, measured from equator.
The angle will be;
θ = ¾ × 90
θ = 67.5
¾ is multiplied by 90° because the angular distance from the pole is 90 degrees.
The speed of a point on the earth's surface located at 3/4 of the length of the arc between the equator and the pole, measured from equator will be:
v = r(cos θ) × ω
v = 6.37 × 10^(6) × cos 67.5 × 7.27 × 10^(-5)
v = 117.22 m/s
Approximation to 2 sig. figures gives;
v = 120 m/s
Answer : 413.44N
Here it is given that an elevator is moving down with an acceleration of 3.36 m/s² . And we are interested in finding out the apparent weight of a 64.2 kg man . For the diagram refer to the attachment .
- From the elevator's frame ( non inertial frame of reference) , we would have to think of a pseudo force.
- The direction of this force is opposite to the direction of acceleration the frame and its magnitude is equal to the product of mass of the concerned body with the acceleration of the frame .
- When a elevator accelerates down , the weight recorded is less than the actual weight .
From the Free body diagram ,
- Mass of the man = 64.2 kg
Well you of course have different kinetic energies with the two speeds.
Kinetic energy = (1/2)*mass*velocity^2
The vehicle's mass is the same in both cases, so we can ignore that as well as 1/2 since it's a constant.
So we have (30)^2 vs (60^2)
which is 900 vs 3600
So having 60 mph compared to 30 mph is 4 times the kinetic energy.
Answer:
Explanation:
a ) starting from rest , so u = o and initial kinetic energy = 0 .
Let mass of the skier = m
Kinetic energy gained = potential energy lost
= mgh = mg l sinθ
= m x 9.8 x 70 x sin 30
= 343 m
Total kinetic energy at the base = 343 m + 0 = 343 m .
b )
In this case initial kinetic energy = 1/2 m v²
= .5 x m x 2.5²
= 3.125 m
Total kinetic energy at the base
= 3.125 m + 343 m
= 346.125 m
c ) It is not surprising as energy gained due to gravitational force by the earth is enormous . So component of energy gained due to gravitational force far exceeds the initial kinetic energy . Still in a competitive event , the fractional initial kinetic energy may be the deciding factor .