Answer:
10
Step-by-step explanation:
Ground level is where h = 0, so solve the equation ...
h(x) = 0
-5(x -4)^2 +180 = 0 . . . . substitute for h(x)
(x -4)^2 = 36 . . . . . . . . . . divide by -5, add 36
x -4 = 6 . . . . . . . . . . . . . . positive square root*
x = 10 . . . . . . add 4
The object will hit the ground 10 seconds after launch.
_____
* The negative square root also gives an answer that satisfies the equation, but is not in the practical domain. That answer would be x = -2. The equation is only useful for time at and after the launch time: x ≥ 0.
Answer:
1,750 ÷5= 350
Step-by-step explanation:
there are 350 calories in each serving 1,750 is the total
Answer:
{x,y,z} = {-18,4,2}
Step-by-step explanation:
Solve equation [2] for the variable x
x = -10y + 2z + 18
Plug this in for variable x in equation [1]
(-10y+2z+18) + 9y + z = 20
- y + 3z = 2
Plug this in for variable x in equation [3]
3•(-10y+2z+18) + 27y + 2z = 58
- 3y + 8z = 4
Solve equation [1] for the variable y
y = 3z - 2
Plug this in for variable y in equation [3]
- 3•(3z-2) + 8z = 4
- z = -2
Solve equation [3] for the variable z
z = 2
By now we know this much :
x = -10y+2z+18
y = 3z-2
z = 2
Use the z value to solve for y
y = 3(2)-2 = 4
Use the y and z values to solve for x
x = -10(4)+2(2)+18 = -18
hold on i will send in the comments i’m working on it rn
Answer:
A=4000, B=80, C=24
Step-by-step explanation:
You forgot to put the correct area model, I attached it to the answer.
We have the fact that Mountain Q is 4 times the height of Mountain P. That's the "4" we have in the left side of our model. It's like having a multiplication table, next to the "4" we have "A" and upper this we have "1000", the only thing we have to do is multiplify 4*1000=4000. The next letter we have is B and below it we have "320", we divided it by 4, 320/4=80. The last letter we have is C, and is below a "6", we only have to multiplify it by 4, 6*4=24.
At the end we only sum our
- A + 320 + c = 4344 (4 times the height of Mountain P).
- 1000 + B + 6 = 1086(the height of the Mountain P).