Answer:
0.247 J = 247 mJ
Explanation:
From the principle of conservation of energy, the workdone by the applied force, W = kinetic energy change + electric potential energy change.
So, W = ΔK + ΔU =1/2m(v₂² - v₁²) + q(V₂ - V₁) where m = mass of particle = 5.4 × 10⁻² kg, q = charge of particle = 5.10 × 10⁻⁵ C, v₁ = initial speed of particle = 2.00 m/s, v₂ = final speed of particle = 3.00 m/s, V₁ = potential at surface A = 5650 V, V₂ = potential at surface B = 7850 V.
So, W = ΔK + ΔU =1/2m(v₂² - v₁²) + q(V₂ - V₁)
= 1/2 × 5.4 × 10⁻²kg × ((3m/s)² - (2 m/s)²) + 5.10 × 10⁻⁵ C(7850 - 5650)
= 0.135 J + 0.11220 J
= 0.2472 J
≅ 0.247 J = 247 mJ
F = normal force by each board on each side
W = weight of the board in between acting in down direction = 95.5 N
f = frictional force in upward direction by each board
= coefficient of friction = 0.663
Using equilibrium of force in Upward direction
f + f = W
f = W/2
f = 95.5/2 = 47.75 N
frictional force is given as
f =
F
47.75 = (0.663) F
F = 72.02 N
<span>D transformed into gravitational potential energy.</span>
Because the acceleration of gravity is the acceleration of gravity.
It doesn't matter what the mass of a falling object is, and it doesn't
matter whether a falling object is solid or liquid. ALL falling objects
fall with the same acceleration, reach the same speed, and hit the
ground at the same time.
If there was no air in the way, then a feather, a school bus, and a
battleship would accelerate at the same rate, fall together and hit
the ground at the same time.
When you drop a cup full of water that has holes in it, the cup and
the water fall with the same acceleration, reach the same speed,
and hit the floor at the same time. Then, THAT's the time to go
and get the mop.
Answer: the work will also increase by double
Explanation:
This is because they are directly proportional in the formula w=f x d