Answer:
This property could be used to create technologically-advanced tools or machines that could easily locate the mineral deposits.
Explanation:
Mineral deposits are hard to find, unless you have the skill or the proper tools in locating them. This is the reason why many people are mining in order to explore the different areas where they could find these deposits.
If one would consider the property of minerals, such as being good conductors of heat and electricity,<u> then they could create a tool or machine that would aid in their exploration.</u> Inventors could probably come up with a sensitive detector which signals when it reaches an area of high heat and electric conductivity. Since most minerals such as <em>gold, silver, copper, galena, bornite </em>and the like have this property, then miners will have a lesser amount of time looking for them.
If this technology will be implemented, though, regulation policy must be strictly implemented because it might lead to<em> over-mining</em> thus leading to the depletion of mineral deposits.
Answer: The energy absorbed by the reaction from the water is 996 Joules.
Explanation:
Energy absorbed by the reaction or energy lost by the water to the reaction,Q.
Mass of the the reaction ,m = 60 g
Specific heat of water = c = 4.15 J\g ^oC
Change is temperature=

Negative sigh indicates that energy was given by the water to the reaction.
The energy absorbed by the reaction from the water is 996 Joules.
Answer:
Option C or the third option.
Explanation: Water is a renewable resource there is so much of it and it just keeps circulating through the system it doesn't run out.
Answer:

Explanation:
As the path is straight, so the speed is equivalent to velocity. Now. assuming that the acceleration and deceleration of the train are constant. So, change of velocity with respect to time for acceleration as well as deceleration is constant. Hence, the slope of the speed-time graph is constant for the time of acceleration as well as deceleration. The speed for the time from
to
is constant, so slope for this interval of time is zero. The speed-time graph is shown in the figure.
The total distance covered by the train during the entire journey is the area of the speed-time graph.
Area


As velocity is in
and time is in
so the unit of area is 
Hence, the total distance is
.