A mercury barometer is a device that is used to measure atmospheric pressure at a location. :)
Answer:
0.99 seconds
Explanation:
The problem depicts a simple harmonic motion.
Now, from Hooke's law,
The spring constant is given as;
k =F/x
where:
x is the displacement of the spring's end from its equilibrium position
F is the restoring force exerted by the spring on that end
From the question, F = 20N while x = 10cm = 0.1m. Thus,
K = 20/0.1 = 200 N/m
Now, time to take for the mass to return to its starting point is a period
The period oscillation of the mass is given as;
T = 2π√m/k
Where m = mass = 5kg
T = 2π√(5/200)
T = 0.99 s
You can't.
Work = (force) x (distance) .
You can squeeze distance out of the speed, but there's no way to determine the FORCE being used.
If there's no friction and the car is traveling in a straight line, then NO force is needed to keep it going. It just keeps going. (Newton's 1st law of motion.)
Answer:
o
Explanation:
The athlete ran a total distance of zero because they ran 100m forward then turned around so they went back to their starting position
Answer:
C
Explanation:
An object in motion will stay in motion unless acted on by a net positive or negative force.
For answer A. If the object were to be in an orbit, it would inevitably accelerate due to it being acted on by the gravitational force from the object it is orbiting. At different points in the orbit, the object will move at different speeds and continuously transfer between kinetic and potential energy.
For answer B. The object would would not stop their motion. In order for the object to lose energy, it would have to transfer it through friction or through its interaction with a gravitational field.
For answer D. No energy is "required" to maintain constant motion unless the object is willingly fighting against a resistive force like friction or a graviational well.