1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vfiekz [6]
2 years ago
5

The intensity of a sound wave at a fixed distance from a speaker vibrating at 1.00 kHz is 0.750 W/m2. (a) Determine the intensit

y if the frequency is increased to 2.20 kHz while a constant displacement amplitude is maintained.(b) Calculate the intensity if the frequency is reduced to 0.250 kHz and the displacement amplitude is quadrupled.
Physics
1 answer:
sveticcg [70]2 years ago
6 0

Answer:

a)   I = 3.63 W / m² , b)   I = 0.750 W / m²

Explanation:

The intensity of a sound wave is given by the relation

         I = P / A = ½ ρ v (2π f s_{max})²

         I = (½ ρ v 4π² s_{max}²) f²

a) with the initial condition let's call the intensity Io

        cte = (½ ρ v 4π² s_{max}²)

         I₀ = cte s² f₀²

        I₀ = cte 10 6

If frequency is increase f = 2.20 10³ Hz

         I = constant (2.20 10³) 2

         I = cte 4.84 10⁶

let's find the relationship of the two quantities

        I / Io = 4.84

        I = 4.84 Io

        I = 4.84 0.750

        I = 3.63 W / m²

b) in this case the frequency is reduced to f = 0.250 10³ Hz and the displacement s = 4 s or

        I = cte (f s)²

        I = constant (0.250 10³ 4)²

 

        I = cte 1 10⁶

         

the relationship

        I / Io = 1

        I = Io

        I = 0.750 W / m²

You might be interested in
Which of the following is related to a sound's pitch?
FromTheMoon [43]
A bell or a siren or a ring in somewhere
3 0
3 years ago
Which shows the order of mechanical advantage from least to greatest?
Eduardwww [97]
What do you mean? I'm confused... You need to put the rest  of the question

3 0
2 years ago
An isolated conducting sphere has a 17 cm radius. One wire carries a current of 1.0000020 A into it. Another wire carries a curr
notsponge [240]

14 ms is required to reach the potential of 1500 V.

<u>Explanation:</u>

The current is measured as the amount of charge traveling per unit time. So the charge of electrons required for each current is determined as the product of current with time.

       Charge = Current \times Time

As two different current is passing at two different times, the net charge will be the different in current.  So,

        \text { Charge }=(1.0000020-1.0000000) \times t=2 \times 10^{-6} \times t

The electric voltage on the surface of cylinder can be obtained as the ratio of charge to the radius of the cylinder.

        V=\frac{k q}{R}

Here k = 9 * 10^9, q is the charge and R is the radius. As q=2 \times 10^{-6} \times t and R =17 cm = 0.17 m, then the voltage will be

        V=\frac{9 \times 10^{9} \times 2 \times 10^{-6} \times t}{0.17}

The time is required to find to reach the voltage of 1500 V, so

1500 =\frac{9 \times 10^{9} \times 2 \times 10^{-6} \times t}{0.17}

\begin{aligned}&t=\frac{1500 \times 0.17}{\left(9 \times 10^{9} \times 2 \times 10^{-6}\right)}\\&t=14.1666 \times 10^{-3} s=14\ \mathrm{ms}\end{aligned}

So, 14 ms is required to reach the potential of 1500 V.

3 0
3 years ago
A 50.0 kg crate is pulled 375 N of force applied to a rope. The crate slides without friction.
LUCKY_DIMON [66]

Hi there!

We can use the work-energy theorem to solve.

Recall that:

\large\boxed{W = \Delta KE = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2}

The initial kinetic energy is 0 J because the crate begins from rest, so we can plug in the given values for mass and final velocity:

W = \frac{1}{2}(50)(5.61^2) = 786.8025 J

Now, we can define work:

\large\boxed{W = Fdcos\theta}}

Now, plug in the values:

786.8025 = Fdcos\theta\\\\786.8025 = (375)(3.07)cos\theta

Solve for theta:

cos\theta = .6834\\\theta = cos^{-1}(.6834) = \boxed{46.887^o}

4 0
2 years ago
(HURRY 20 MINS)
leonid [27]

Answer:

Roles and responsibilities

Explanation:

Definition of safety plan:

"A Safety Plan is a written document that describes the process for identifying the physical and health hazards that could harm workers, <em>procedures to prevent accidents</em>, and steps to take when accidents occur. Written safety plans can be comprehensive, such as an injury and illness prevention program, or they can be specific to a particular activity, hazard, or piece of equipment. The written safety plan is your blueprint for keeping workers safe."

Alternative definition

"What is an OSHA Safety Plan? An OSHA Safety Plan is a written plan that describes the potential hazards in the workplace, <u><em>and the company policies</em></u>, controls, and <u><em>work practices</em></u> used to minimize those hazards."

elements of a safety plan:

Basic Safety Plan Elements

Policy or goals statement

<u><em>List of responsible persons</em></u>

Hazard identification

<em>Hazard controls and safe practices</em>

<em>Emergency and accident response</em>

Employee training and communication

<em>Recordkeeping</em>

I say roles and responsibilities because it makes sense that if it's your responsibility and possibly something that could be dangerous -- hence a safety plan --  you would have to sign it before working. I hope this helps!

4 0
8 months ago
Other questions:
  • Fortnite is Soooooooooooooo trash apex legends is better lol
    5·2 answers
  • PLEASE PLEASE HELP<br> (Picture)
    7·1 answer
  • The light intensity incident on a metallic surface with a work function of 3 eV produces photoelectrons with a maximum kinetic e
    10·1 answer
  • What is the acceleration of a cabinet of mass 45 kilograms if Jake and Ted push it by applying horizontal force of 25 newtons an
    11·1 answer
  • When sugar is added to water, the sugar dissolves and the resulting liquid is clear. Have the combined sugar and water formed a
    10·2 answers
  • Which statement best describes the difference between speed and velocity? A. Velocity is speed with a direction. B. Speed is vel
    10·2 answers
  • Pendulum A has a bob of mass m hung from the string of length L; pendulum B is identical to A except its bob has the length 2L.
    12·1 answer
  • A voltage of 18 V is applied across the ends of a piece of copper wire 8 cm long. The mass of an electron is 9.11 x 10kg and its
    11·1 answer
  • lasers 1 and 2 emit light of the same color, and the electric field in the beam of laser 1 is twice as strong as the e-field of
    9·1 answer
  • PWEESE HELP ME WIT MY QUIZ
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!