Answer:
85.34g of NH3
Explanation:
Step 1:
The balanced equation for the reaction. This is given below:
N2 + 3H2 —> 2NH3
Step 2:
Determination of the number of moles of NH3 produced by the reaction of 2.51 moles of N2. This is illustrated below:
From the balanced equation above,
1 mole of N2 reacted to produce 2 moles of NH3.
Therefore, 2.51 moles of N2 will react to produce = (2.51 x 2)/1 = 5.02 moles of NH3.
Therefore, 5.02 moles of NH3 is produced from the reaction.
Step 3:
Conversion of 5.02 moles of NH3 to grams. This is illustrated below:
Molar mass of NH3 = 14 + (3x1) = 17g/mol
Number of mole of NH3 = 5.02 moles
Mass of NH3 =..?
Mass = mole x molar Mass
Mass of NH3 = 5.02 x 17
Mass of NH3 = 85.34g
Therefore, 85.34g of NH3 is produced.
Answer:
Explanation:
Given parameters:
Initial temperature T₁ = 25.2°C = 25.2 + 273 = 298.2K
Initial pressure = P₁ = 0.6atm
Final temperature = 72.4°C = 72.4 + 273 = 345.4K
Unknown:
Final pressure = ?
Solution:
To solve this problem, we use an adaption of the combined gas law where the volume gas is fixed. This simplification results into:

where P and T are temperatures, 1 and 2 are initial and final temperatures.
Input the parameters and solve;
P₂ = 0.7atm