Answer:
Explanation:
Complete the following statements to describe solids, liquids, and gases. Select the correct answer from each drop-down menu.
Answer:
true
Explanation:
Because ice melts if the temperature increasese
Answer:
Explanation:
Oxygen is one of the most abundant elements on this planet. Our atmosphere is 21% free elemental oxygen. Oxygen is also extensively combined in compounds in the earths crust, such as water (89%) and in mineral oxides. Even the human body is 65% oxygen by mass.
Free elemental oxygen occurs naturally as a gas in the form of diatomic molecules, O2 (g). Oxygen exhibits many unique physical and chemical properties. For example, oxygen is a colorless and odorless gas, with a density greater than that of air, and a very low solubility in water. In fact, the latter two properties greatly facilitate the collection of oxygen in this lab. Among the unique chemical properties of oxygen are its ability to support respiration in plants and animals, and its ability to support combustion.
In this lab, oxygen will be generated as a product of the decomposition of hydrogen peroxide. A catalyst is used to speed up the rate of the decomposition reaction, which would otherwise be too slow to use as a source of oxygen. The catalyst does not get consumed by the reaction, and can be collected for re-use once the reaction is complete. The particular catalyst used in this lab is manganese(IV) oxide.
Answer:
1.332 g.
Explanation:
- We can use the general law of ideal gas: <em>PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- At the same T and P and constant V (1.0 L), different gases have the same no. of moles (n):
<em>∴ (n) of CO₂ = (n) of C₂H₆</em>
<em></em>
∵ n = mass/molar mass
<em>∴ (mass/molar mass) of CO₂ = (mass/molar mass) of C₂H₆</em>
mass of CO₂ = 1.95 g, molar mass of CO₂ = 44.01 g/mol.
mass of C₂H₆ = ??? g, molar mass of C₂H₆ = 30.07 g/mol.
<em>∴ mass of C₂H₆ = [(mass/molar mass) of CO₂]*(molar mass) of C₂H₆</em> = [(1.95 g / 44.01 g/mol)] * (30.07 g/mol) =<em> 1.332 g.</em>
<em></em>
Answer:
Procedure (2)
Explanation:
Assume the dialyses come to equilibrium in the allotted times.
Procedure (1)
If you are dialyzing 5 mL of sample against 4 L of water, the concentration of NaCl will be decreased by a factor of

Procedure (2)
For the first dialysis, the factor is

After a second dialysis, the original concentration of NaCl will be reduced by a factor of

Procedure (2) is more efficient by a factor of
