Answer:
1) The power needed to process 50 ton/hr is 135.4 HP.
2) The void fraction of the bed is 0.37.
Explanation:
1) For this type of milling operations, we can estimate the power needed for an operation according to the work index (Ei), the passing size of the circuit feed (F80) and the passing size of the product (P80).
We assume the units of Ei are kWh/t.
The equation that relates this parameters and the power is (size of particles in μm):

The power needed to process 50 ton/hor is

2) The density of the packed bed can be expressed as

being f the fraction and ρ the density of every fraction. We know that the density of the void is 0 (ρv=0) and that fv=1-fs (the sum of the fractions ois equal to the total space).
Then we can rearrange

The void fraction of the bed is 0.37.
The reactivity of a metal is determined by these things.
Firstly, the number of electrons in the outer shell; the fewer the number of electrons in the outer shell, the more reactive the metal.
The number of electron shells also affects reactivity, the more electron shells there are, the more reactive the metal.
Answer: X could represent the element of oxidation state (+2) such as (Mg2+, Pb2+, Ba2+, Ca2+, Ba2+, Zn2+, ....etc)
Explanation:
- The formula of the compound XSO4 is a neutral compound that the algebraic summation of the oxidation states of different elements in it must be zero.
- The group SO4 has the oxidation state (2-), that S has (6+) oxidation state and O has (2-) oxidation state, so the oxidation of SO4 = (6+) + (-2*4) = -2.
- It is clear that X must have the oxidation state 2+.
- So, X could be represents by many different elements such as (Mg2+, Pb2+, Ba2+, Ca2+, Ba2+, Zn2+, Fe2+, ....etc)
Answer:
Explanation:
Given parameters:
Molarity of KOH = 0.26M
Volume of H₂SO₄ = 19.76mL
Molarity of H₂SO₄ = 0.20M
Unknown:
Volume of KOH = ?
Solution:
This is a neutralization reaction in which an acid reacts with a base to produce salt and water:
H₂SO₄ + 2KOH → K₂SO₄ + 2H₂O
We solve from the known to the unknown in the reaction.
The known is the acid and from there we can find the number of moles of the acid to be completely neutralized:
Number of moles of acid = molarity x volume
Number of moles of acid = 19.76 x 0.20 = 3.95mol
From the balanced reaction equation:
1 mole of acid reacts with 2 moles of the bases KOH
3.95mole of acid would react with 3.95moles x 2 of the base
Number of moles of reacting base = 7.90moles
To find the volume of base;
Volume of base = 
Volume =
= 30.40mL
Learn more:
Neutralization brainly.com/question/6447527
#learnwithBrainly