Answer:
When you moved the compass near a bar magnet, the needle pointed toward the magnet's magnetic field and not toward the north.
Explanation:
Answer:
(C) increases; decreases
Explanation:
Since the two quantities are inversely proportional, it means that an increase in one quantity results in a decrease in the value of the other quantity. More so, an increase in the separation distance causes a decrease in the force of gravity and a decrease in the separation distance causes an increase in the force of gravity.
Invention I think which is B as they don't invent things in an enquiry
Because there's no such thing as "really" moving.
ALL motion is always relative to something.
Here's an example:
You're sitting in a comfy cushy seat, reading a book and listening
to your .mp3 player, and you're getting drowsy. It's so warm and
comfortable, your eyes are getting so heavy, finally the book slips
out of your hand, falls into your lap, and you are fast asleep.
-- Relative to you, the book is not moving at all.
-- Relative to the seat, you are not moving at all.
-- Relative to the wall and the window, the seat is not moving at all.
-- But your seat is in a passenger airliner. Relative to people on the
ground, you are moving past them at almost 500 miles per hour !
-- Relative to the center of the Earth, the people on the ground are moving
in a circle at more than 700 miles per hour.
-- Relative to the center of the Sun, the Earth and everything on it are moving
in a circle at about 66,700 miles per hour !
How fast are they REALLY moving ?
There's no such thing.
It all depends on what reference you're using.
Write each force in component form:
<em>v </em>₁ : 50 N due east → (50 N) <em>i</em>
<em>v</em> ₂ : 80 N at N 45° E → (80 N) (cos(45°) <em>i</em> + sin(45°) <em>j</em> ) ≈ (56.5 N) (<em>i</em> + <em>j</em> )
The resultant force is the sum of these two vectors:
<em>r</em> = <em>v </em>₁ + <em>v</em> ₂ ≈ (106.5 N) <em>i</em> + (56.5 N) <em>j</em>
Its magnitude is
|| <em>r</em> || = √[(106.5 N)² + (56.5 N)²] ≈ 121 N
and has direction <em>θ</em> such that
tan(<em>θ</em>) = (56.5 N) / (106.5 N) → <em>θ</em> ≈ 28.0°
i.e. a direction of about E 28.0° N. (Just to clear up any confusion, I mean 28.0° north of east, or 28.0° relative to the positive <em>x</em>-axis.)