<span>Since Florence is east, then Florence is 5 miles due west of Paris (30-25). Then, using the Pythagorean theorem with 45 miles as the length and 5 miles as the width, the square root of (45^2+5^2) is 45.277 miles.</span>
A sphere is charged with electrons to −9 × 10−6 C. The value given is the total charge of all the electrons present in the sphere. To calculate the number of electrons in the sphere, we divide the the total charge with the charge of one electron.
N = 9 × 10−6 C / 1.6 × 10−19 C
N = 5.6 x 10^13
Answer:
a) Osmolarity measures the moles of solute per liter of solution.
Explanation:
Osmolarity is defined as the number of moles of solute that contribute to the osmotic pressure, per liter of solution, of solution. That is, the measurement of the solute concentration. The prefix "osmo-" indicates the possible variation of the osmotic pressure in the cells, which will occur when the solution is introduced into the body.
Answer:
hmax = 1/2 · v²/g
Explanation:
Hi there!
Due to the conservation of energy and since there is no dissipative force (like friction) all the kinetic energy (KE) of the ball has to be converted into gravitational potential energy (PE) when the ball comes to stop.
KE = PE
Where KE is the initial kinetic energy and PE is the final potential energy.
The kinetic energy of the ball is calculated as follows:
KE = 1/2 · m · v²
Where:
m = mass of the ball
v = velocity.
The potential energy is calculated as follows:
PE = m · g · h
Where:
m = mass of the ball.
g = acceleration due to gravity (known value: 9.81 m/s²).
h = height.
At the maximum height, the potential energy is equal to the initial kinetic energy because the energy is conserved, i.e, all the kinetic energy was converted into potential energy (there was no energy dissipation as heat because there was no friction). Then:
PE = KE
m · g · hmax = 1/2 · m · v²
Solving for hmax:
hmax = 1/2 · v² / g
No, energy transformation is occurring in every point of the motion.
In fact, the ball starts from point 1 with maximum kinetic energy and zero potential energy (taking the hand of the boy as reference level). The kinetic energy converts into gravitational potential energy as it goes higher: in point 2, part of the kinetic energy has converted into potential energy (because the velocity has decreased, while the height has increased), and then when the ball reaches point 3 all the kinetic energy has converted into potential energy (because now the velocity is zero, while the height is maximum). As the ball descends (point 4), the velocity starts to increase again, therefore the kinetic energy increases and the potential energy decreases (because the height is deacreasing now).
Summarizing, energy transformation is occuring in every point of the motion.