To find the horizontal distance multiple the horizontal velocity by the time. Since there is no given time it must be calculated using kinematic equation.
Y=Yo+Voyt+1/2at^2
0=.55+0+1/2(-9.8)t^2
-.55=-4.9t^2
sqrt(.55/4.9)=t
t=0.335 seconds
Horizontal distance
=0.335s*1.2m/s
=0.402 meters
The correct answer is Model A shows the three-dimensional shape of the molecule, but Model B does not.
Explanation:
Model A and B show the structure of a molecule. In the case of model A, the structure is represented through the use of three-dimensional shapes, while in model B the structure is represented using the letters of each element and showing how each element is connected to others.
In this context, one feature that makes model A better is that this represents the molecule using a 3D model, which is better to understand how the molecule looks like and what is its structure. Moreover, both models are alike because they show the number of atoms of each element, although model A does not show the types of elements.
Answer: First, we determine the circumference of the Mars by the equation below.
C = 2πr
Substituting the known values,
C = 2(π)(3,397 km) = 6794π km
To determine the tangential speed, we divide the circumference calculated above by the time it takes for Mars to complete one rotation and that is,
tangential speed = 6794π km / 24.6 hours = 867.64 km/h
Kinetic energy has nothing to do with anything other than motion of the particle.
When a particle with velocity v collides another particle(suppose it is at rest for simplication), assuming that there is perfectly elastic collision between them, the velocity of particle which was at rest becomes mv/M ( assuming mass of particle in motion to be m and at rest to be M) from convervation of linear momentum. And all this transfer of energy happens in a fraction of seconds which is not visible to naked eyes.
Hence 1st option is correct!
If the object being represented is going both up and to the right.