Answer: P = 36.75W
The additional power needed to account for the loss is 36.75W.
Explanation:
Given;
Mass of the runner m= 60 kg
Height of the centre of gravity h= 0.5m
Acceleration due to gravity g= 9.8m/s
The potential energy of the body for each step is;
P.E = mgh
P.E = 60 × 9.8 × 0.5
PE = 294J
Since the average loss per compression on the leg is 10%.
Energy loss = 10% (P.E)
E = 10% of 294J
E = 29.4J
To calculate the runner's additional power
given that time per stride is = 0.8s
Power P = Energy/time
P = E/t
P = 29.4J/0.8s
P = 36.75W
Answer:
mechanical
Explanation:
the energy is carried by water <3 hope this helped
If he stops running the tea is still going to be moving so it will spill on him.
<span>Inertia keeps us orbiting because any object with mass has the tendency to resist changes to their direction and speed of movement. Combine that with the interaction of the gravitational attraction of the sun, and that is what keeps Earth in orbit. The sun’s gravitational force is one that is proportional to Earth’s mass, and it acts in a way that is almost exactly perpendicular to Earth’s motion. This keeps Earth from spinning into the sun or far away from it.</span>
Answer:
a = (v2 - v1) / t
From A to B (8 - 4) m/s / 1 s = 4 m / s^2
From A to D ( 7 - 4) m/s / 5 s = .6 m / s^2
Note these equations hold for "uniform" values
They say nothing about the acceleration at intermediate points - the equation just says that his average speed increased from 4 m/s to 7 m/s during a 5 sec period