2.3 grams of wood has the same energy as 1g of oil.
The majority of wood and wood waste used as fuel in the United States is used by industry. Manufacturers of paper and wood products are the biggest industrial users. They produce steam and electricity from waste from paper and lumber mills, which saves money by lowering the number of other fuels and electricity they need to buy to run their facilities.
There are numerous power plants that primarily burn wood to produce electricity in the electric power sector, and some coal-burning power plants burn wood chips along with coal to cut down on sulfur dioxide emissions. The primary purpose of wood consumption in the business sector is heating.
To learn more about wood please visit-
brainly.com/question/10967023
#SPJ9
In collision that are categorized as elastic, the total kinetic energy of the system is preserved such that,
KE1 = KE2
The kinetic energy of the system before the collision is solved below.
KE1 = (0.5)(25)(20)² + (0.5)(10g)(15)²
KE1 = 6125 g cm²/s²
This value should also be equal to KE2, which can be calculated using the conditions after the collision.
KE2 = 6125 g cm²/s² = (0.5)(10)(22.1)² + (0.5)(25)(x²)
The value of x from the equation is 17.16 cm/s.
Hence, the answer is 17.16 cm/s.
Answer:
The magnitude and direction of the resultant force are approximately 599.923 newtons and 36.405°.
Explanation:
First, we must calculate the resultant force (), in newtons, by vectorial sum:
(1)
Second, we calculate the magnitude of the resultant force by Pythagorean Theorem:
Let suppose that direction of the resultant force is an standard angle. According to (1), the resultant force is set in the first quadrant:
Where is the direction of the resultant force, in sexagesimal degrees.
The magnitude and direction of the resultant force are approximately 599.923 newtons and 36.405°.
Its A: the use of hydropower often changes the natural flow of water through an ecosystem
add me on robloxs <span />
Answer:
d. 50 C
Explanation:
In this problem, we have to add 800 ml of water at 20 Celsius to 800 ml of water at 80 Celsius.
According to the 2nd law of thermodynamics, heat transfers from hot to cold temperature.
The quantity of both the different waters is equal so this makes it very easy. All we have to do is find the mean of both the temperatures:
Final temperature = (20 C + 80 C)/2
= 50 Celsius