1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Veronika [31]
4 years ago
8

Find the first three harmonics of a string of linear mass density 2.00 g/m and length 0.600 m when the tension in it is 50.0 n.

Physics
1 answer:
blsea [12.9K]4 years ago
8 0

As we know that Nth harmonic of the string is given by

f = \frac{N}{2L}\sqrt{\frac{T}{m/L}}

now here we will have

m/L = mass density = 2 g/m

m/L = 0.002 kg/m

Length = L = 0.600 m

Tension = T = 50.0 N

now from above formula we have

f = \frac{N}{2(0.600)}\sqrt{\frac{50.0}{0.002}}

f = 131.8N

now for first harmonic N = 1

f_1 = 131.8 Hz

for second harmonic N = 2

f_2 = 263.5 Hz

for third harmonic N = 3

f_3 = 395.3 Hz

You might be interested in
In a lab, four balls have the same velocities but different masses.
olya-2409 [2.1K]

Answer:

New Momentum of Ball B=13.2 \frac{\mathrm{kgm}}{\mathrm{s}}

<u>Explanation:</u>

Given:

Mass of Ball A=1kg

Mass of Ball B= 2kg

Mass of Ball C=5kg

Mass of Ball D=7kg

Velocities of A=B=C=D=2.2\frac{m}{s}

Momentum of Ball A=2.2\frac{k g m}{s}

Momentum of Ball B=4.4 \frac{k g m}{s}

Momentum of Ball C=11\frac{k g m}{s}

Momentum of Ball D=15\frac{k g m}{s}

To Find:

Change in Momentum When of Ball B gets tripled

Solution:

Though all balls have same velocity, thus we get

Velocities of A=B=C=D=2.2\frac{m}{s}

Initial Momentum of Ball B=4.4\frac{k g m}{s}

If the Mass of Ball B gets tripled;

We get New Mass of Ball B=3×Actual Mass of the ball

                                            =3×2=6kg

Thus we get Mass of Ball B=6kg

According to the formula,  

Change in momentum of Ball B \Delta p=m \times \Delta v

Where \Delta p=change in momentum

          m=mass of the ball B

         \Delta v=change in velocity ball B

And \Delta v=v, since all balls, have same velocity

Thus the above equation, changes to

         \Delta p=m \times v

Substitute all the values in the above equation we get

         \Delta p=6 \times 2.2

                     =13.2 \frac{\mathrm{kgm}}{\mathrm{s}}  

Result:

 Thus the New Momentum of ball B=13.2 \frac{\mathrm{kgm}}{\mathrm{s}}

3 0
3 years ago
Read 2 more answers
how much time would it take for an airplane to reach its destination if it traveled at an average speed of 790 km/hr for a dista
NeTakaya
I think your question is incomplete because the distance between destination and departure point isn't given in the question

8 0
3 years ago
A train is accelerating at a rate of 2 km/hr/s.  If its initial velocity is 20 km/hr, what is its velocity after 30 seconds?
Mademuasel [1]
Here it is. *WARNING* VERY LONG ANSWER

________________________________________... 
<span>11) If Galileo had dropped a 5.0 kg cannon ball to the ground from a height of 12 m, the change in PE of the cannon ball would have been product of mass(m),acceleration(g)and height(h) </span>

<span>The change in PE =mgh=5*9.8*12=588 J </span>
<span>______________________________________... </span>
<span>12.) The 2000 Belmont Stakes winner, Commendable, ran the horse race at an average speed = v = 15.98 m/s. </span>

<span>Commendable and jockey Pat Day had a combined mass =M= 550.0 kg, </span>

<span>Their KE as they crossed the line=(1/2)Mv^2 </span>

<span>Their KE as they crossed the line=0.5*550*(15.98)^2 </span>

<span>Their KE as they crossed the line is 70224.11 J </span>

<span>______________________________________... </span>
<span>13)Brittany is changing the tire of her car on a steep hill of height =H= 20.0 m </span>

<span>She trips and drops the spare tire of mass = m = 10.0 kg, </span>

<span>The tire rolls down the hill with an intial speed = u = 2.00 m/s. </span>

<span>The height of top of the next hill = h = 5.00 m </span>

<span>Initial total mechanical energy =PE+KE=mgH+(1/2)mu^2 </span>

<span>Initial total mechanical energy =mgH+(1/2)mu^2 </span>

<span>Suppose the final speed at the top of second hill is v </span>

<span>Final total mechanical energy =PE+KE=mgh+(1/2)mv^2 </span>

<span>As mechanical energy is conserved, </span>

<span>Final total mechanical energy =Initial total mechanical energy </span>

<span>mgh+(1/2)mv^2=mgH+(1/2)mu^2 </span>

<span>v = sq rt [u^2+2g(H-h)] </span>

<span>v = sq rt [4+2*9.8(20-5)] </span>

<span>v = sq rt 298 </span>

<span>v =17.2627 m/s </span>

<span>The speed of the tire at the top of the next hill is 17.2627 m/s </span>
<span>______________________________________... </span>
<span>14.) A Mexican jumping bean jumps with the aid of a small worm that lives inside the bean. </span>

<span>a.)The mass of bean = m = 2.0 g </span>

<span>Height up to which the been jumps = h = 1.0 cm from hand </span>

<span>Potential energy gained in reaching its highest point= mgh=1.96*10^-4 J or 1960 erg </span>

<span>b.) The speed as the bean lands back in the palm of your hand =v=sq rt2gh =sqrt 0.196 =0.4427 m/s or 44.27 cm/s </span>
<span>_____________________________ </span>
<span>15.) A 500.-kg horse is standing at the top of a muddy hill on a rainy day. The hill is 100.0 m long with a vertical drop of 30.0 m. The pig slips and begins to slide down the hill. </span>

<span>The pig's speed a the bottom of the hill = sq rt 2gh = sq rt 2*9.8*30 =sq rt 588 =24.249 m/s </span>
<span>__________________________________ </span>
<span>16.) While on the moon, the Apollo astronauts Neil Armstrong jumped up with an intitial speed 'u'of 1.51 m/s to a height 'h' of 0.700 m, </span>

<span>The gravitational acceleration he experienced = u^2/2h = 2.2801 /(2*0.7) = 1.629 m/s^2 </span>
<span>______________________________________... </span>

<span>EDIT </span>
<span>1.) A train is accelerating at a rate = a = 2.0 km/hr/s. </span>

<span>Acceleration </span>

<span>Initial velocity = u = 20 km/hr, </span>

<span>Velocity after 30 seconds = v = u + at </span>

<span>Velocity after 30 seconds = v = 20 km/hr + 2 (km/hr/s)*30s = </span>

<span>Velocity after 30 seconds = v = 20 km/hr + 60 km/hr = 80 km/ hr </span>

<span>Velocity after 30 seconds = v = 80 km/hr=22.22 m/s </span>
<span>_______________________________- </span>
<span>2.) A runner achieves a velocity of 11.1 m/s 9 s after he begins. </span>

<span>His acceleration = a =11.1/9=1.233 m/s^2 </span>

<span>Distance he covered = s = (1/2)at^2=49.95 m</span>
7 0
3 years ago
Over a short interval the coordinate of a car in the meters isgiven by x(t) = 27t - 4.0 t3 where time t is in seconds,at the end
wariber [46]

Answer:

5. -24 m/s²

Explanation:

Acceleration: This can be defined as the rate of change of velocity.

The S.I unit of acceleration is m/s².

mathematically,

a = dv/dt ............................ Equation 1

Where a = acceleration, dv/dt = is the differentiation of velocity with respect to time.

But

v = dx(t)/dt

Where,

x(t) = 27t-4.0t³...................... Equation 2

Therefore, differentiating equation 2 with respect to time.

v = dx(t)/dt = 27-12t²............. Equation 3.

Also differentiating equation 3 with respect to time,

a = dv/dt = -24t

a = -24t .................... Equation 4

from the question,

At the end of 1.0 s,

a = -24(1)

a = -24 m/s².

Thus the acceleration = -24 m/s²

The right option is 5. -24 m/s²

4 0
3 years ago
The barricade at the end of a subway line has a large spring designed to compress 2.00 m when stopping a 1.10 ✕ 105 kg train mov
Mrac [35]

Answer:

(a) k = 1684.38 N/m = 1.684 KN/m

(b) Vi = 0.105 m/s

(c) F = 1010.62 N = 1.01 KN

Explanation:

(a)

First, we find the deceleration of the car. For that purpose we use 3rd equation of motion:

2as = Vf² - Vi²

a = (Vf² - Vi²)/2s

where,

a = deceleration = ?

Vf = final velocity = 0 m/s (since, train finally stops)

Vi = Initial Velocity = 0.35 m/s

s = distance covered by train before stopping = 2 m

Therefore,

a = [(0 m/s)² - (0.35 m/s)²]/(2)(2 m)

a = 0.0306 m/s²

Now, we calculate the force applied on spring by train:

F = ma

F = (1.1 x 10⁵ kg)(0.0306 m/s²)

F = 3368.75 N

Now, for force constant, we use Hooke's Law:

F = kΔx

where,

k = Force Constant = ?

Δx = Compression = 2 m

Therefore.

3368.75 N = k(2 m)

k = (3368.75 N)/(2 m)

<u>k = 1684.38 N/m = 1.684 KN/m</u>

<u></u>

<u>(</u>c<u>)</u>

Applying Hooke's Law with:

Δx  = 0.6 m

F = (1684.38 N/m)(0.6 m)

<u>F = 1010.62 N = 1.01 KN</u>

<u></u>

(b)

Now, the acceleration required for this force is:

F = ma

1010.62 N = (1.1 kg)a

a = 1010.62 N/1.1 x 10⁵ kg

a = 0.0092 m/s²

Now, we find initial velocity of train by using 3rd equation of motion:

2as = Vf² - Vi²

a = (Vf² - Vi²)/2s

where,

a = deceleration = -0.0092 m/s² (negative sign due to deceleration)

Vf = final velocity = 0 m/s (since, train finally stops)

Vi = Initial Velocity = ?

s = distance covered by train before stopping = 0.6 m

Therefore,

-0.0092 m/s² = [(0 m/s)² - Vi²]/(2)(0.6 m)

Vi = √(0.0092 m/s²)(1.2 m)

<u>Vi = 0.105 m/s</u>

4 0
4 years ago
Other questions:
  • The capacitor in the flash of a disposable camera has a value of 165 μF. 1) What is the resistance of the filament in the bulb i
    15·1 answer
  • Suppose you are in total equilibrium in water (in other words you are floating and not moving in any direction)What could you do
    11·1 answer
  • The man who discovered that even individual light particles have wave characteristics was:
    9·2 answers
  • Which of the following statements is true about hydrothermal vents?
    8·2 answers
  • Which best describes how the sun rotates?
    10·2 answers
  • A gas in a piston–cylinder assembly undergoes a compression process for which the relation between pressure and volume is given
    9·1 answer
  • RIGHT ANSWER GETS BRAINLIEST+5 STARS.
    9·2 answers
  • A toy of mass 0.170-kg is undergoing SHM on the end of a horizontal spring with force constant k = 250 N/m . When the toy is a d
    12·1 answer
  • A copper rod has a length of 1.3 m and a cross-sectional area of 3.6 10-4 m2. One end of the rod is in contact with boiling wate
    6·1 answer
  • What do astronomers use in addition to parallax to find the actual distance of stars that are close to Earth?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!