Answer:
First, we write the augmented matrix.
⎡
⎢
⎣
1
−
1
1
2
3
−
1
3
−
2
−
9
|
8
−
2
9
⎤
⎥
⎦
Next, we perform row operations to obtain row-echelon form.
−
2
R
1
+
R
2
=
R
2
→
⎡
⎢
⎣
1
−
1
1
0
5
−
3
3
−
2
−
9
|
8
−
18
9
⎤
⎥
⎦
−
3
R
1
+
R
3
=
R
3
→
⎡
⎢
⎣
1
−
1
1
0
5
−
3
0
1
−
12
|
8
−
18
−
15
⎤
⎥
⎦
The easiest way to obtain a 1 in row 2 of column 1 is to interchange \displaystyle {R}_{2}R
2
and \displaystyle {R}_{3}R
3
.
Interchange
R
2
and
R
3
→
⎡
⎢
⎣
1
−
1
1
8
0
1
−
12
−
15
0
5
−
3
−
18
⎤
⎥
⎦
Then
−
5
R
2
+
R
3
=
R
3
→
⎡
⎢
⎣
1
−
1
1
0
1
−
12
0
0
57
|
8
−
15
57
⎤
⎥
⎦
−
1
57
R
3
=
R
3
→
⎡
⎢
⎣
1
−
1
1
0
1
−
12
0
0
1
|
8
−
15
1
⎤
⎥
⎦
The last matrix represents the equivalent system.
x
−
y
+
z
=
8
y
−
12
z
=
−
15
z
=
1
Using back-substitution, we obtain the solution as \displaystyle \left(4,-3,1\right)(4,−3,1).First, we write the augmented matrix.
⎡
⎢
⎣
1
−
1
1
2
3
−
1
3
−
2
−
9
|
8
−
2
9
⎤
⎥
⎦
Next, we perform row operations to obtain row-echelon form.
−
2
R
1
+
R
2
=
R
2
→
⎡
⎢
⎣
1
−
1
1
0
5
−
3
3
−
2
−
9
|
8
−
18
9
⎤
⎥
⎦
−
3
R
1
+
R
3
=
R
3
→
⎡
⎢
⎣
1
−
1
1
0
5
−
3
0
1
−
12
|
8
−
18
−
15
⎤
⎥
⎦
The easiest way to obtain a 1 in row 2 of column 1 is to interchange \displaystyle {R}_{2}R
2
and \displaystyle {R}_{3}R
3
.
Interchange
R
2
and
R
3
→
⎡
⎢
⎣
1
−
1
1
8
0
1
−
12
−
15
0
5
−
3
−
18
⎤
⎥
⎦
Then
−
5
R
2
+
R
3
=
R
3
→
⎡
⎢
⎣
1
−
1
1
0
1
−
12
0
0
57
|
8
−
15
57
⎤
⎥
⎦
−
1
57
R
3
=
R
3
→
⎡
⎢
⎣
1
−
1
1
0
1
−
12
0
0
1
|
8
−
15
1
⎤
⎥
⎦
The last matrix represents the equivalent system.
x
−
y
+
z
=
8
y
−
12
z
=
−
15
z=1
Using back-substitution, we obtain the solution as \displaystyle \left(4,-3,1\right)(4,−3,1).
Initial fee: $25
Per hour fee: $7
Your budget: $60
x = # of hours you can rent the surfboard
$25 + $7x ≤ $60
Subtract $25 from both sides.
$7x ≤ $35
Divide both sides by $7
x ≤ 5
You can rent the surfboard for less than or equal to 5 hours.
Answer:
The answer is C.
Step-by-step explanation:
Multiply 4 by 76, 77, and 78.
4 * 76 = 304
4 * 77 = 308
4 * 78 = 312
304 = 304, so C is the correct answer.
Hope this helps!