i squared r = 0.03x0.03x1000=3x0.03x10=.9W
Answer:
Four charges of equal magnitude sitting at the vertices of a square
Explanation:
We can arrive at such a situation by thinking of a simple example first, a configuration of two charges. The force acting on the middle point of a straight line joining the two points(charges) will be zero. That is, the net Electric field will be zero as they cancel out being equal in magnitude and opposite in direction.
Now, we can extend this idea to a square having charge q at each vertex. If we put 'p' at the geometric center, we can see that the Electric fields along the diagonals cancel out due to the charges at the diagonally opposite vertices(refer to the figure attached). Actually, the only requirement is that the diagonally opposite charges are equal.
We can further take this to 3 dimensions. Consider a cube having charges of equal magnitude at each vertex. In this case, the point 'p' will yet again be the geometric center as the Electric field due to the diagonally opposite charges will cancel out.
Explanation:
In total, the length is measured from the tip of the bow in a linear fashion to the stern of the formation of delight including any back-deck extensions. The measurement involves bow sprits; rudders; detachable engines and engine sections; handles; and various fittings and connections.
Importance in calculating a boat's length:
it affects the transportation costs (the longer the length, the higher the cost).
The pontoon's length counts as you find out how much rope you need to wrestle.
The cost of vessel settlement on marinas depends in part on the pontoon length. As more area is consumed by a more drawn pontoon, the docking charges are higher.
Transportation guidelines will probably not allow pontoons past a specific length on specific occasions of the day.
Every action has an equal or opposite reaction.
You weigh 60kg
<span>So your acceleration is 6N / 60 kg = 0.1m/s^2</span>