1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yuradex [85]
3 years ago
15

What is the equation used to calculate power?

Physics
2 answers:
shtirl [24]3 years ago
6 0

Answer:

Power = Work ÷ Time

( Watts ) = ( Joules ) ÷ ( Seconds )

Explanation:

Paladinen [302]3 years ago
3 0

Answer:

p =  \frac{w}{t}  \\    p = power(watts) \\ w = work(joules) \\ t = time(seconds)

You might be interested in
Index fossils are used to determine the relative ages of rock and fossils and are also used to
kolbaska11 [484]

Index fossils are used to determine the relative ages of rock and fossils and are also used to define the boundaries between geologic periods.

<u>Option: A</u>

<u>Explanation:</u>

The fossils which are recognized as fossils guides or indicator fossils are used to classify and recognize geological or faunal periods, termed as index fossils. It must be of short vertical reach, wide geographic distribution and swift patterns in evolution. It helps to assess the rock layers ' age and helps to date other fossils found close and around them. For an instance, Ammonites were abundant in the Mesozoic period between 245 to 65 mya, they have not been found after the Cretaceous era, as they became endangered during the K-T extinction (65 mya).

3 0
3 years ago
A 100-W (watt) light bulb has resistance R=143Ω (ohms) when attached to household current, where voltage varies as V=V0sin(2πft)
Phantasy [73]

Complete Question

A 100-W (watt) light bulb has resistance R=143Ω (ohms) when attached to household current, where voltage varies as V=V0sin(2πft), where V0=110 V, f=60 Hz. The power supplied to the bulb is P=V2R J/s (joules per second) and the total energy expended over a time period [0,T] (in seconds) is U  =  \int\limits^T_0 {P(t)} \, dt

Compute U if the bulb remains on for 5h

Answer:

The value is  U  =  7.563 *10^{5} \  J

Explanation:

From the question we are told that

   The power rating of the bulb is P  =  100 \  W

   The resistance is   R =  143 \ \Omega

   The  voltage is  V  =  V_o  sin [2 \pi ft]

   The  energy expanded is U  =  \int\limits^T_0 {P(t)} \, dt

   The  voltage  V_o  =  110 \  V

   The frequency is  f =  60 \  Hz

    The  time considered is  t =  5 \  h  =  18000 \  s

Generally power is mathematically represented as

             P =  \frac{V^2}{ R}

=>          P =  \frac{( 110  sin [2 \pi * 60t])^2}{ 144}

=>           P =  \frac{ 110^2 [ sin [120 \pi t])^2}{ 144}

So  

     U  =  \int\limits^T_0 { \frac{ 110^2*  [sin [120 \pi t])^2}{ 144}} \, dt

=>  U  =  \frac{110^2}{144} \int\limits^T_0 { (   sin^2 [120 \pi t]} \, dt

=>  U =  \frac{110^2}{144} \int\limits^T_0 { \frac{1 - cos 2 (120\pi t)}{2} } \, dt

=>  U =  \frac{110^2}{144} \int\limits^T_0 { \frac{1 - cos 240 \pi t)}{2} } \, dt

=>  U =  \frac{110^2}{144} [\frac{t}{2}  - [\frac{1}{2} *  \frac{sin(240 \pi t)}{240 \pi} ] ]\left  | T} \atop {0}} \right.

=>  U =  \frac{110^2}{144} [\frac{t}{2}  - [\frac{1}{2} *  \frac{sin(240 \pi t)}{240 \pi} ] ]\left  | 18000} \atop {0}} \right.

U =  \frac{110^2}{144} [\frac{18000}{2}  - [\frac{1}{2} *  \frac{sin(240 \pi (18000))}{240 \pi} ] ]

=>   U  =  7.563 *10^{5} \  J

7 0
3 years ago
What is 1.0 x 10^9 in standard form?
jasenka [17]
1.0 x 10^9= 1000000000
3 0
3 years ago
A car travels at a speed of 55 km/hr and slows down to 10 km/hr in 20 seconds. What is the acceleration?
WITCHER [35]

Answer:

b

Explanation:

3 0
2 years ago
Read 2 more answers
An athlete jumping vertically on a trampoline leaves the surface with a velocity of 8.5 m/s upward. what maximum height does she
Mumz [18]
<span>Her center of mass will rise 3.7 meters. First, let's calculate how long it takes to reach the peak. Just divide by the local gravitational acceleration, so 8.5 m / 9.8 m/s^2 = 0.867346939 s And the distance a object under constant acceleration travels is d = 0.5 A T^2 Substituting known values, gives d = 0.5 9.8 m/s^2 (0.867346939 s)^2 d = 4.9 m/s^2 * 0.752290712 s^2 d = 3.68622449 m Rounded to 2 significant figures gives 3.7 meters. Note, that 3.7 meters is how much higher her center of mass will rise after leaving the trampoline. It does not specify how far above the trampoline the lowest part of her body will reach. For instance, she could be in an upright position upon leaving the trampoline with her feet about 1 meter below her center of mass. And during the accent, she could tuck, roll, or otherwise change her orientation so she's horizontal at her peak altitude and the lowest part of her body being a decimeter or so below her center of mass. So it would look like she jumped almost a meter higher than 3.7 meters.</span>
8 0
3 years ago
Other questions:
  • Cube A has a volume of 2cm x 2cm x 2cm. what is its density
    10·1 answer
  • Possible reasons why seascorpions went extinct
    6·1 answer
  • What best explains why a wood burning fire place represents an open system
    13·2 answers
  • Beasy is driving in his car to take care of some errands. The first errand has him
    7·1 answer
  • Bill and amy want to ride their bikes to school which is 14.4 kilometers away. It takes Amy 49 minutes to get to school and bill
    6·1 answer
  • A car moving at a speed of 20m/s has a kinetic energy of 300,000 J. What is the car’s mass?
    8·1 answer
  • What is a analogy for transition metals
    13·1 answer
  • You can take your heart rate for 6 seconds and multiply by 10 to get the 60 second count quickly during
    13·1 answer
  • <img src="https://tex.z-dn.net/?f=%20%5Csf%20%7B%20%5Cfcolorbox%7Bgreen%7D%7Bg%7D%7B%20What%20are%20impulses%3F%7D%7D%20" id="Te
    11·1 answer
  • Suppose a standing wave created on a spring that is 10.5 m long has a speed of 14 m/s and a frequency of 2 Hz. How many nodes an
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!