Answer:
When you release the opening of the balloon, gas quickly escapes to equalize the pressure inside with the air pressure outside of the balloon. The escaping air exerts a force on the balloon itself. ... That opposing force—called thrust, in this case—propels the rocket forward.
Answer:
Yes, it is reckless. This is because it is the responsibility of the pilot to make sure that the direction of the propeller blast is away from people or other aircraft and in a safe direction.
Explanation:
Yes, it is reckless to let the propeller blast face people and other aircraft. This is because it is the responsibility of the pilot to make sure that the direction of the propeller blast is away from people or other aircraft and in a safe direction. People and other aircraft can be injured by the debris and the rocks that are scattered by the engine of the aircraft.
Answer:
D. The temperature does not change during a phase change because the average kinetic energy does not change. Therefore, the potential energy in the bonds between molecules must change.
Explanation:
When there is a change of state (for example, from solid into a liquid, as in this example), when energy is added to the system, the temperature of the substance does not change.
The reason for this is that the energy supplied is no longer used to increase the average kinetic energy of the particle, but instead it is used to break the bonds between the different particles/molecules. For instance, since in this case the substance is changing from solid to liquid, all the energy supplied during the phase change is used to break the bonds between the molecules of the solid: when the process is done, all the molecules will be free to slide past each other, and the substance has turned completely into a liquid.
The bonds between molecules store potential energy: therefore, this means that the energy supplied during the phase change is not used to change the kinetic energy, but to change the potential energy in the bonds between the molecules.
Answer:
ε = 2 V/cm
Explanation:
To calculate the mobility inside this bar, we just need to apply the expression that let us determine the mobility. This expression is the following:
ε = ΔV / L
Where:
ε: Hole mobility inside the bar
ΔV: voltage applied in the bar
L: Length of the bar
We already have the voltage and the length so replacing in the above expression we have:
ε = 2 V / 1 cm
<h2>
ε = 2 V/cm</h2><h2>
</h2>
The data of the speed can be used for further calculations, but in this part its not necessary.
Hope this helps