1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leno4ka [110]
3 years ago
5

An automobile having a mass of 1,000 kg is driven into a brick wall in a safety test. The bumper behaves like a spring with cons

tant 5.90 ✕ 106 N/m and is compressed 2.63 cm as the car is brought to rest. What was the speed of the car before impact, assuming no energy is lost in the collision with the wall?
Physics
1 answer:
vlada-n [284]3 years ago
8 0

Answer:

v=2.02\frac{m}{s}

Explanation:

Assuming no energy lost, according to the law of conservation of energy, the kinetic energy of the automobile becomes potential energy after the crash:

K=U\\\frac{mv^2}{2}=\frac{kx^2}{2}

Here m is the automobile's mass, v is the speed of the car before impact, k is the "bumper" constant and x is the compression of the bumper due to the collision. Solving for v:

v=x\sqrt\frac{k}{m}\\v=2.63*10^{-2}m\sqrt{\frac{5.9*10^6\frac{N}{m}}{10^3kg}}\\v=2.02\frac{m}{s}

You might be interested in
What momentum of a 50kilogram ice skater gliding across the ice at a speed of 5m/s?
Ivenika [448]
Momentum (P) = Mass (kg) * Velocity (m/s)

P = M * V
P = 50 * 5
P = 250

So momentum is 250 kgm/s

5 0
3 years ago
Read 2 more answers
A 22 µF capacitor charged to 0.7 kV and a second 115 µF capacitor charged to 5.5 kV are connected to each other, with the positi
vesna_86 [32]

Answer:

0.099C

Explanation:

First, we need to get the common potential voltage using the formula

V=\frac {C_2V_2-C_1V_1}{C_1+C_2}

Where V is the common voltage, C and V represent capacitance and charge respectively. Subscripts 1 and 2 to represent the the first and second respectively. Substituting the above with the following given values then

C_1=22\times 10^{-6} F\\ C_2=115\times 10^{-6} F\\ V_1= 0.7\times 10^{3}\\V_2=5.5\times 10^{3}

Therefore

V=\frac {115\times 10^{-6}\times 5.5\times 10^{3}-22\times 10^{6}\times 0.7\times 10^{3}}{22\times 10^{-6}+115\times 10^{-6}}=4504.3795620437

Charge, Q is given by CV hence for the first capacitor charge will be Q_1=C_1V

Here, Q_1=22\times 10^{-6}\times 4504.3795620437=0.0990963503649C\approx 0.099C

8 0
3 years ago
The tallest building in the world, according to some architectural standards, is the Taipei 101 in Taiwan, at a height of 1671 f
Andrej [43]

Answer:

35.14°C

Explanation:

The equation for linear thermal expansion is \Delta L = \alpha L_0\Delta T, which means that a bar of length L_0 with a thermal expansion coefficient \alpha under a temperature variation \Delta T will experiment a length variation \Delta L.

We have then \Delta L = 0.481 foot, L_0 = 1671 feet and \alpha = 0.000013 per centigrade degree (this is just the linear thermal expansion of steel that you must find in a table), which means from the equation for linear thermal expansion that we have a \Delta T =\frac{\Delta L }{\alpha L_0} = 22.14°. As said before, these degrees are centigrades (Celsius or Kelvin, it does not matter since it is only a variation), and the foot units cancel on the equation, showing no further conversion was needed.

Since our temperature on a cool spring day was 13.0°C, our new temperature must be T_f=T_0+\Delta T = 35.14°C

3 0
3 years ago
A high-pass filter consists of a 1.66 μF capacitor in series with a 80.0 Ω resistor. The circuit is driven by an AC source with
Julli [10]

Explanation:

Given that,

Capacitor C=1.66\ \mu F

Resistor R=80.0\ \Omega

Peak voltage = 5.10 V

(A). We need to calculate the crossover frequency

Using formula of frequency

f_{c}=\dfrac{1}{2\pi R C}

Where, R = resistor

C = capacitor

Put the value into the formula

f_{c}=\dfrac{1}{2\pi\times80.0\times1.66\times10^{-6}}

f_{c}=1198.45\ Hz

(B). We need to calculate the V_{R} when f = \dfrac{1}{2f_{c}}

Using formula of  V_{R}

V_{R}=V_{0}(\dfrac{R}{\sqrt{R^2+(\dfrac{1}{2\pi fC})^2}})

Put the value into the formula

V_{R}=5.10\times(\dfrac{80.0}{\sqrt{(80.0)^2+(\dfrac{1}{2\pi\times\dfrac{1}{2}\times1198.45\times1.66\times10^{-6}})^2}})

V_{R}=2.280\ Volt

(C). We need to calculate the V_{R} when f = f_{c}

Using formula of  V_{R}

V_{R}=5.10\times(\dfrac{80.0}{\sqrt{(80.0)^2+(\dfrac{1}{2\pi\times1198.45\times1.66\times10^{-6}})^2}})

V_{R}=3.606\ Volt

(D). We need to calculate the V_{R} when f = 2f_{c}

Using formula of  V_{R}

V_{R}=5.10\times(\dfrac{80.0}{\sqrt{(80.0)^2+(\dfrac{1}{2\pi\times2\times1198.45\times1.66\times10^{-6}})^2}})

V_{R}=4.561\ Volt

Hence, This is the required solution.

8 0
3 years ago
A 26.2-kg dog is running northward at 3.02 m/s, while a 5.30-kg cat is running eastward at 2.74 m/s. Their 65.1-kg owner has the
REY [17]

Answer:

Angle with the +x axis is θ = 79.599degree

Then the velocity of owner = 1.235m/s

Explanation:

Given that the mass of dog is m1 =26.2 kg

velocity of dog is u1 = 3.02 m/s (north)

mass of cat is m2 = 5.3 kg

velocity is u2 = 2.74 m/s (east )

Mass of owner is M = 65.1 kg

Consider the east direction along +x axis andnorth along +y

momentum of dog is Py = m1 x u1

= 79.124 kg.m/s (j)

momentum of cat is Px = m2 x u2

= 14.522 kg.m/s (i)

Then the net magnitude of momentum is P = (Px2 + Py2)1/2

= 80.445

Angle with the +x axis is θ =tan-1(Py / Px ) = 79.599 degree

Then the velocity of owner is v = P / M = 1.235 m/s

3 0
3 years ago
Other questions:
  • An aluminum rod is 10.0 cm long and a steel rod is 80.0 cm long when both rods are at a temperature of 15°C. Both rods have the
    12·1 answer
  • A system of two objects has ΔKtot = 6 J and ΔUint = -5 J. Part A How much work is done by interaction forces? Express your answe
    5·1 answer
  • You have a great summer job in a research laboratory with a group investigating the possibility of producing power from fusion.
    13·1 answer
  • Which of the following is NOT an example of a network configuration?
    13·1 answer
  • What two things must you know to find the <br> momentum of an object? <br> :( anyone?
    13·2 answers
  • A transformation of ΔSTV results in ΔUTV. Which transformation maps the pre-image to the image?
    13·2 answers
  • Raindrops are falling straight down at 11 m/s when suddenly the wind starts blowing horizontally at a brisk 5.0 m/s. From your p
    6·1 answer
  • The temperature at which the vapor pressure of a liquid equals the environmental pressure surrounding the liquid is best defined
    8·2 answers
  • A compressed spring does not have elastic potential energy.
    10·1 answer
  • In a Laundromat, during the spin-dry cycle of a washer, the rotating tub goes from rest to its maximum angular speed of 8.70 rev
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!