The first thing you should know is that the work is defined as:
W = F * d
Where
F = force
d = displacement
We have then
(a) the block
F = (0.2) * (100) = 20
d = 100
W = (20) * (100) = 2000 ft.lbf
(b) the man as the system.
F = (0.2) * (100 + 180) = 56
d = 100
W = (56) * (100) = 5600 ft.lbf
answer:
(a) 2000 ft.lbf
(b) 5600 ft.lbf
Because the air in their wings helps them fly
The base unit of time in the metric and SI system is the second.
<span>Fossils provide solid evidence that organisms from the past are not the same as those found today; they show a progression of evolution. Scientists calculate the age of fossils and categorize them to determine when the organisms lived relative to each other. Hope this helps</span>
Answer:
U = 1 / r²
Explanation:
In this exercise they do not ask for potential energy giving the expression of force, since these two quantities are related
F = - dU / dr
this derivative is a gradient, that is, a directional derivative, so we must have
dU = - F. dr
the esxresion for strength is
F = B / r³
let's replace
∫ dU = - ∫ B / r³ dr
in this case the force and the displacement are parallel, therefore the scalar product is reduced to the algebraic product
let's evaluate the integrals
U - Uo = -B (- / 2r² + 1 / 2r₀²)
To complete the calculation we must fix the energy at a point, in general the most common choice is to make the potential energy zero (Uo = 0) for when the distance is infinite (r = ∞)
U = B / 2r²
we substitute the value of B = 2
U = 1 / r²