The pictures are not attached, therefore, I cannot give a specific choice.
However, I will try to help you out.
The angle of incidence is defined as the angle formed between the ray of light and the normal to the surface that the ray is falling on.
The angle of incidence can be shown in the attached image.
Therefore, for your question, choose the image on which the above description applies.
Hope this helps :)
Answer:
The width of the slit is 0.4 mm (0.00040 m).
Explanation:
From the Young's interference expression, we have;
(λ ÷ d) = (Δy ÷ D)
where λ is the wavelength of the light, D is the distance of the slit to the screen, d is the width of slit and Δy is the fringe separation.
Thus,
d = (Dλ) ÷ Δy
D = 3.30 m, Δy = 4.7 mm (0.0047 m) and λ = 563 nm (563 ×
m)
d = (3.30 × 563 ×
) ÷ (0.0047)
= 1.8579 ×
÷ 0.0047
= 0.0003951 m
d = 0.00040 m
The width of the slit is 0.4 mm (0.00040 m).
Answer:
Explanation:
1 g is 9.8 m/s^2 the problem wants the results in km/h so we'll fix that really quick.
9.8 m/s^2 (1 km/1000m)(60 sec/1 min)^2(60 min/1 hour)^2 = 127008 km/hour^2
Now, I'm assuming the ship is starting from rest, and hopefully you know your physics equations. We are going to use vf = vi + at. Everything is just given, or we can assume, so I'll just solve.
vf = vi + at
vf = 0 + 127008 km/hour^2 * 24 hours
vf = 3,048,192 km/hour
If there's anything that doesn't make sense let me know.
Answer:
Final Length = 30 cm
Explanation:
The relationship between the force applied on a string and its stretching length, within the elastic limit, is given by Hooke's Law:
F = kΔx
where,
F = Force applied
k = spring constant
Δx = change in length of spring
First, we find the spring constant of the spring. For this purpose, we have the following data:
F = 50 N
Δx = change in length = 25 cm - 20 cm = 5 cm = 0.05 m
Therefore,
50 N = k(0.05 m)
k = 50 N/0.05 m
k = 1000 N/m
Now, we find the change in its length for F = 100 N:
100 N = (1000 N/m)Δx
Δx = (100 N)/(1000 N/m)
Δx = 0.1 m = 10 cm
but,
Δx = Final Length - Initial Length
10 cm = Final Length - 20 cm
Final Length = 10 cm + 20 cm
<u>Final Length = 30 cm</u>
Answer:
Measuring, comparing and estimating liquid volumes are taught using metric units like liters and milliliters and customary units like quart, pints, gallons and more. Capacity is actually the amount of liquid in the container, which is also the volume of a liquid.
Explanation: