Answer:
(-5, 0) ∪ (5, ∞)
Step-by-step explanation:
I find a graph convenient for this purpose. (See below)
__
When you want to find where a function is increasing or decreasing, you want to look at the sign of the derivative. Here, the derivative is ...
f'(x) = 4x^3 -100x = 4x(x^2 -25) = 4x(x +5)(x -5)
This has zeros at x=-5, x=0, and x=5. The sign of the derivative will be positive when 0 or 2 factors have negative signs. The signs change at the zeros. So, the intervals of f' having a positive sign are (-5, 0) and (5, ∞).
30 adults because if there are 3/10 it means they reduced so if the denominator is 100 then 30/100 is the answer :)
Looks like a badly encoded/decoded symbol. It's supposed to be a minus sign, so you're asked to find the expectation of 2<em>X </em>² - <em>Y</em>.
If you don't know how <em>X</em> or <em>Y</em> are distributed, but you know E[<em>X</em> ²] and E[<em>Y</em>], then it's as simple as distributing the expectation over the sum:
E[2<em>X </em>² - <em>Y</em>] = 2 E[<em>X </em>²] - E[<em>Y</em>]
Or, if you're given the expectation and variance of <em>X</em>, you have
Var[<em>X</em>] = E[<em>X</em> ²] - E[<em>X</em>]²
→ E[2<em>X </em>² - <em>Y</em>] = 2 (Var[<em>X</em>] + E[<em>X</em>]²) - E[<em>Y</em>]
Otherwise, you may be given the density function, or joint density, in which case you can determine the expectations by computing an integral or sum.
What’s your last question
Answer:
x
Step-by-step explanation:
(log to the base 3) of 27^x can be re-written as
x*(log to the base 3) of 27, which is equivalent to:
x*(log to the base 3 of 3^3) = x
So the answer is simply " x "