Normal rainwater has a pH of 5.6<span> (slightly acidic)</span>
Answer: Balanced molecular equation :

Total ionic equation:
The net ionic equation:

Explanation:
Complete ionic equation : In complete ionic equation, all the substances that are strong electrolyte are present in an aqueous state as ions.
Net ionic equation : In the net ionic equations, we are not include the spectator ions in the equations.
Spectator ions : The ions present on reactant and product side which do not participate in a reactions. The same ions present on both the sides.
When sodium phosphate and zinc acetate then it gives zinc phosphate and sodium acetate as product.
The balanced molecular equation will be,

The total ionic equation in separated aqueous solution will be,

In this equation, and are the spectator ions.
By removing the spectator ions from the balanced ionic equation, we get the net ionic equation.
The net ionic equation will be,

Answer:
1. smaller. 2. smaller. 3. greater
Explanation:
1. H−O−H angle is 104.45 and H−C−H angle is 109.5
2. O−S−O angle is 119 and F−B−F angle is 120
3. The F−S−F bond angle in SF₆ is 90 and F−Br−F bond angle in BrF₅ is 84.8
Answer:
for what school? It's different for all sadly :(
Explanation:
Answer: 90.04°C
Explanation: <u>Calorimeter</u> is a device measures the amount of heat of a chemical or physical process. An ideal calorimeter is one that is well-insulated, i.e., prevent the transfer of heat between the calorimeter and its surroundings. So, the net heat change inside the calorimeter is zero:

Rearraging, it can be written as

showing that the heat gained by Substance 1 is equal to the energy lost by Substance 2.
In our case, water is gaining heat, because its temperature has risen and so, brass is losing energy:

Calculating:
![m_{w}.c_{w}.\Delta T=-[m_{b}.c_{b}.\Delta T]](https://tex.z-dn.net/?f=m_%7Bw%7D.c_%7Bw%7D.%5CDelta%20T%3D-%5Bm_%7Bb%7D.c_%7Bb%7D.%5CDelta%20T%5D)
![100.4.18.(18.4-15)=-[52.9.0.375.(18.4-T)]](https://tex.z-dn.net/?f=100.4.18.%2818.4-15%29%3D-%5B52.9.0.375.%2818.4-T%29%5D)
Note: final temperature is the same as the substances are in thermal equilibrium.
Solving:
418(3.4)= - 365.01 + 19.8375T
19.8375T = 1786.21
T = 90.04
The initial temperature for the sample of brass was 90.04°.