The molarity of aqueous lithium bromide, LiBr solution is 0.2 M
We'll begin by calculating the number of mole of Pb(NO₃)₂ in the solution.
- Volume = 10 mL = 10 / 1000 = 0.01 L
- Molarity of Pb(NO₃)₂ = 0.250 M
- Mole of Pb(NO₃)₂ =?
Mole = Molarity x Volume
Mole of Pb(NO₃)₂ = 0.25 × 0.01
Mole of Pb(NO₃)₂ = 0.0025 mole
Next, we shall determine the mole of LiBr required to react with 0.0025 mole of Pb(NO₃)₂
Pb(NO₃)₂ + 2LiBr —> PbBr₂ + 2LiNO₃
From the balanced equation above,
1 mole of Pb(NO₃)₂ reacted with 2 mole of LiBr.
Therefore,
0.0025 mole of Pb(NO₃)₂ will react with = 2 × 0.0025 = 0.005 mole of LiBr
Finally, we shall determine the molarity of the LiBr solution
- Mole = 0.005 mole
- Volume = 25 mL = 25 / 1000 = 0.025 L
- Molarity of LiBr =?
Molarity = mole / Volume
Molarity of LiBr = 0.005 / 0.025
Molarity of LiBr = 0.2 M
Learn more about molarity: brainly.com/question/10103895
Given :
A 10.99 g sample of NaBr contains 22.34% Na by mass.
To Find :
How many grams of sodium does a 9.77g sample of sodium bromine contain.
Solution :
By law of constant composition , in any given chemical compound, the elements always combine in the same proportion with each other.
Therefore , percentage of Na by mass in NaBr will be same for every amount .
Percentage of Na in 9.77 g NaBr is 22.34 % too .
Gram of Na =
.
Hence , this is the required solution .
An increase in temperature will increase the average kinetic energy of the molecules. As the particles move faster, they will likely hit the edge of the container more often.
If a solution is saturated, that means it already posses the maximum number of solutes thus have been dissolved in it, and thus the concentration cannot be increased.
Answer:
B
Explanation:
A chemical bond is formed when there is a transfer or sharing of electrons. When there is a transfer, what we have is that the electrons completely leave the outermost shell of an atom, usually metal to the outermost shell of another atom, usually a nonmetal. This particularly alters the electronic configuration of these atoms. This is ionic or electrovalent bonding
Now, electron sharing is also another way of chemical bond formation. Electrons might be shared between two atoms in a case principally known as covalent bonding. The electrons here are controlled by the 2 nuclei