Answer: There are 0.006 moles of acid in the flask.
Explanation:
Given:
= 21.35 mL,
= 0.150 M
= 25.0 mL,
= ?
Formula used to calculate molarity of
is as follows.

Substitute the values into above formula as follows.

As molarity is the number of moles of a substance present in a liter of solution.
Total volume of solution = 
= 21.35 mL + 25.0 mL
= 46.36 mL (1 mL = 0.001 L)
= 0.04636 L
Therefore, moles of acid required are calculated as follows.

Thus, we can conclude that there are 0.006 moles of acid in the flask.
Hi!
Your Question,
what career is when a person anlysis food in laboratory ?
Answer,
Food makes the analysis that I know is trying to engineer food. That's called that in Turkey
Good Luck
#Turkey
The number of energy levels increases as you move down a group as the number of electrons increases. Each subsequent energy level is further from the nucleus than the last.
Answer:

Explanation:
The pressure is constant, so we can use Charles' Law.

Data:
V₁ = 1.92 × 10³ L; T₁ = 20 °C
V₂ = ?; T₂ = 68 °C
Calculations:
(a) Convert temperatures to kelvins
T₁ = (20 + 273.15) K = 293.15 K
T₂ = (68 + 273.15) K = 341.15 K
(b) Calculate the volume

The new volume of the gas is
.