<u>Answer:</u>
<u>For a:</u> The empirical formula of the compound is 
<u>For b:</u> The empirical formula of the compound is 
<u>Explanation:</u>
We are given:
Percentage of P = 43.6 %
Percentage of O = 56.4 %
Let the mass of compound be 100 g. So, percentages given are taken as mass.
Mass of P = 43.6 g
Mass of O = 56.4 g
To formulate the empirical formula, we need to follow some steps:
- <u>Step 1:</u> Converting the given masses into moles.
Moles of Phosphorus =
Moles of Oxygen = 
- <u>Step 2:</u> Calculating the mole ratio of the given elements.
For the mole ratio, we divide each value of the moles by the smallest number of moles calculated which is 1.406 moles.
For Phosphorus = 
For Oxygen = 
Converting the moles in whole number ratio by multiplying it by '2', we get:
For Phosphorus = 
For Oxygen = 
- <u>Step 3:</u> Taking the mole ratio as their subscripts.
The ratio of P : O = 2 : 5
Hence, the empirical formula for the given compound is 
We are given:
Percentage of K = 28.7 %
Percentage of H = 1.5 %
Percentage of P = 22.8 %
Percentage of O = 56.4 %
Let the mass of compound be 100 g. So, percentages given are taken as mass.
Mass of K = 28.7 g
Mass of H = 1.5 g
Mass of P = 43.6 g
Mass of O = 56.4 g
To formulate the empirical formula, we need to follow some steps:
- <u>Step 1:</u> Converting the given masses into moles.
Moles of Potassium =
Moles of Hydrogen =
Moles of Phosphorus =
Moles of Oxygen = 
- <u>Step 2:</u> Calculating the mole ratio of the given elements.
For the mole ratio, we divide each value of the moles by the smallest number of moles calculated which is 0.735 moles.
For Potassium = 
For Hydrogen = 
For Phosphorus = 
For Oxygen = 
- <u>Step 3:</u> Taking the mole ratio as their subscripts.
The ratio of K : H : P : O = 1 : 2 : 1 : 4
Hence, the empirical formula for the given compound is 
The temperature of the gas sample is 813 K.
<u>Explanation:</u>
We have to use the ideal gas equation to find the temperature of the gas sample.
The ideal gas equation is PV = nRT
Pressure, P = 429 mm Hg = 0.56 atm
Volume, V = 560 mL = 0.56 L
R = gas constant = 0.08205 L atm mol⁻¹K⁻¹
Mass = 0.211 g
Molar mass of carbon di oxide = 44.01 g / mol
Moles, n = 
= 0.0047 mol
Now, we have to plugin the above values in the above equation, we will get the temperature as,

T = 
= 813 K
So the temperature of the gas sample is 813 K.
The Canadarm has allowed for the addition of more modules to the International Space Station, and it has represented Canada’s willingness in international cooperation.