Lets name the unknown metal as M. Cation would be M³⁺.
the molecular formula of the compound is M₂(SO₄)₃
the mass of one mole - (molar mass of M x2 + 3 x molar mass of SO₄²⁻)
= 2M + 96 x 3
= 2M + 288
In 1 mol if there's 72.07% of sulphate ,
then 72.07 % corresponds to 288 g
1 % is then - 288/72.07
100 % of the compound - 288/72.07 x 100
molar mass of the compound - 399.6 g/mol
mass of 2M - 399.6 - 288 = 111.6 g
molar mass of M - 111.6 /2 = 55.8 g/mol
the element with molar mass of 55.8 is Fe.
Unknown metal is iron(III) , Fe³⁺
Answer:
It is buried combustible geologic deposits of organic materials, formed from decayed plants and animals that have been converted to crude oil, coal, natural gas, or heavy oils by exposure to heat and pressure in the earth's crust over hundreds of millions of years.
Explanation:
Answer:
157.8 g
Explanation:
Step 1: Write the balanced equation
Fe₂O₃ + 3 CO ⟶ 3 CO₂ + 2 Fe
Step 2: Calculate the moles corresponding to 209.7 g of Fe
The molar mass of Fe is 55.85 g/mol
209.7 g × 1 mol/55.85 g = 3.755 mol
Step 3: Calculate the moles of CO needed to produce 3.755 moles of Fe
The molar ratio of CO to Fe is 3:2. The moles of CO needed are 3/2 × 3.755 = 5.633 mol
Step 4: Calculate the mass corresponding to 5.633 moles of CO
The molar mass of CO is 28.01 g/mol.
5.633 mol × 28.01 g/mol = 157.8 g
Answer: 2 C2H4 + 6 O2 => 4 CO2 + 4 H2O
Explanation:The coefficient are as follows: 2: 6: 4: 4
Each atom on the reactant and product side are equal.
Reactant Product
C 2x2 = 4 4x1 = 4
H 2x4 = 8 4x2 = 8
O 6x2 = 12 (4x2) + 4 = 12
Answer:
V₂ = 2.91 L
Explanation:
Given data:
Initial volume = 3.50 L
Initial temperature = 90.0°C (90+273 = 363 K)
Final temperature = 30.0 °C ( 30 +273 = 303 K)
Final volume = ?
Solution:
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
V₁/T₁ = V₂/T₂
3.50 L / 363 K) = V₂ / 303 K)
V₂ = 0.0096 L/K × 303 K
V₂ = 2.91 L