Remark
The question with these kind of problems is "Which R do you use?" That's where dimensional analysis is so handy. You must look at the units of the givens and choose your R accordingly. You'll see how that works in a moment.
You need to list the givens along with their units and in this case the property you want to solve for. You need all that to determine the R value
Givens
n = 0.25 moles
T = 35°C = 35 + 273.15 = 308.15°K
V = 6.23 L
Pressure = P in kPa
Which R
The units of the R you want has to have units of moles, kPa, °K and liters
The R that you want is 8.314
<em><u>Formula</u></em>
PV = nRT
P 6.23 = 0.25 * 8.314 * 308.15 Combine the left
P*6.23 = 640.5
P = 640.5/6.23 = 102.81 The answer should be 100 kpA of 1.0 * 10^2 kPa
because the number of moles has only 2 sig digs.
But if sig digs are not a problem 102.8 is likely close enough.
Second Question
You are going to have to clean up the numbers. I think I've got only 1 chance at this. The partial pressures of the 2 gases will add up to the total pressure. So the total pressure was 100 approx and the water vapor was 3.36 kPa. The difference is
Total = air + water vapor
100.18 = air + 3.36 about Subtract 3.36 from both sides.
100.18 - 3.36 = 96.82 about. Pick the answer that is closest to that. I'll clean up the numbers if I can.
Answer C
HCl is an acid, C5H5N is a base, Cl is an acid, and HC5H5N is an acid.
Hope this helps! If so, brainliest would be appreciated!
<span>The temperature in the tire increased, causing an increased tire pressure.</span>
That’s the SI unit of energy or work
Answer:
70.1 mL
Explanation:
First let's look at the formula for magnesium nitrate, and get the molar mass, we should end up with Mg(NO3)2 for the formula and this should have a molar mass of 148.3 g/mol.
Lets get the number of moles of the magnesium by taking the number of grams over the molar mass, (21.94 g)/(148.3 g/mol). grams cancel and we're left with approximately 0.148 moles.
Now let's plug our numbers into the molarity formula, M = n/L, this should give us 2.11 mol/L = (0.148 mol)/L, now let's solve for L, divide both sides by 0.148 which will give us 14.26 L^-1 = 1/L now we take the inverse of both sides to get 0.07012 L = L.
Now we have the liters, but the question askes for milliliters, so let's multiply by 1000, and then after rounding to sig figs we will get 70.1 mL as our answer. (Note: I used the exact values instead of the approximations throughout this explanation, so if you calculate the answer by plugging in these values, it might be slightly off.)