The uncertainty principle is one of the most famous (and probably misunderstood) ideas in physics. It tells us that there is a fuzziness in nature, a fundamental limit to what we can know about the behaviour of quantum particles and, therefore, the smallest scales of nature. Of these scales, the most we can hope for is to calculate probabilities for where things are and how they will behave. Unlike Isaac Newton's clockwork universe, where everything follows clear-cut laws on how to move and prediction is easy if you know the starting conditions, the uncertainty principle enshrines a level of fuzziness into quantum theory.
This Should help you
<span>Sodium carbonate (Na2CO3) reacts with acetic acid (CH3COOH) to form sodium acetate (NaCH3COO), carbon dioxide (CO2), and water (H2O). A chemist carries out this reaction in a bomb calorimeter. The reaction causes the temperature of a bomb calorimeter to decrease by 0.985 K. The calorimeter has a mass of 1.500 kg and a specific heat of 2.52 J/g K. What is the heat of reaction for this system? What equation should I use in this case? I've written down these notes: Steps: 1. Calculate the mass of the solution in total. 2. Convert mass to volume or vice versa if needed. 3. Calculate the temperature change of the solution. 4. Calculate the energy released by the reaction.</span>
Answer:
The heaviest element to be created by exothermic nuclear fusion is Iron
Explanation:
Because it is the heaviest element produced during fusion without having to add energy, and it is the lightest element produced during fission without having to add energy. Energy-wise, everything in the universe wants to be iron! Iron is the most abundant element on Earth, making up 34.5 percent of Earth's mass.
Spring scale
It's a tool used to measure force.