When the student the sled jumps off toward the north , the sled most likely move towards the south.
<h3>What is the Newton third law?</h3>
According to the Newton third law of motion, action and reaction are equal and opposite. This means that the direction of the reaction force must also be opposite to that of the action.
As such, when the student the sled jumps off toward the north , the sled most likely move towards the south.
Learn more about Newton third law:brainly.com/question/974124
#SPJ1
Answer:
The answer is 0.83 seconds.
Explanation:
The formula of free fall is following:

Where g=9.8 m/s^2 and t=2 seconds, the rock takes:

19.6 meters. This is the half distance of the cliff. The whole distance is 39.2 meters. So it takes:

2.83 second to fall down completely. The rock takes the second half of the cliff in 0.83 seconds
The time of motion of the track star is determined as 0.837 s.
<h3>Time of motion of the track star</h3>
The time of motion of the track star is calculated as follows;
T = (2u sinθ)/g
where;
- T is time of motion
- g is acceleration due to gravity
- θ is angle of projection
T = (2 x 12 x sin20)/9.8
T = 0.837 s
Learn more about time of motion here: brainly.com/question/2364404
#SPJ1
For the answer to the question above, first find out the gradient.
<span>m = rise/run </span>
<span>=(y2-y1)/(x2-x1) </span>
<span>the x's and y's are the points given: "After three hours, the velocity of the car is 53 km/h. After six hours, the velocity of the car is 62 km/h" </span>
<span>(x1,y1) = (3,53) </span>
<span>(x2,y2) = (6,62) </span>
<span>sub values back into the equation </span>
<span>m = (62-53)/(6-3) </span>
<span>m = 9/3 </span>
<span>m = 3 </span>
<span>now we use a point-slope form to find the the standard form </span>
<span>y-y1 = m(x-x1) </span>
<span>where x1 and y1 are any set of point given </span>
<span>y-53 = 3(x-3) </span>
<span>y-53 = 3x - 9 </span>
<span>y = 3x - 9 + 53 </span>
<span>y = 3x + 44 </span>
<span>y is the velocity of the car, x is the time.
</span>I hope this helps.