Answer:
W = 8.01 × 10^(-17) [J]
Explanation:
To solve this problem we need to know the electron is a subatomic particle with a negative elementary electrical charge (-1,602 × 10-19 C), The expression to calculate the work is given by:
W = q*V
where:
q = charge = 1,602 × 10^(-19) [C]
V = voltage = 500 [V]
W = work [J]
W = 1,602 × 10^(-19) * 500
W = 8.01 × 10^(-17) [J]
It lets the viewer know it's something to do with underwater.
Answer:
The potential energy increases and the kinetic energy decreases
They were going at a velocity 4.07m/s
<u>Explanation:</u>
Distance s =5 m
initial velocity u= 0.8 m/s
Acceleration a =1.6m/s2
We have to calculate the velocity with which they were going afterwards i.e final velocity.
Use the equation of motion

They were going with a velocity 4.07 m/s afterwards.
Since kinetic energy is a form of energy using the equation KE=¹/₂mv², the units of measurement is in Joules (J). Therefore, the tennis ball had more kinetic energy than the baseball since velocity is a larger factor than the mass is when determining kinetic energy.