For this case we have that by definition, the kinetic energy is given by the following formula:

Where:
m: It is the mass
v: It is the velocity
According to the data we have to:

Substituting the values we have:

finally, the kinetic energy is 
Answer:
Option A
Answer:
The usual method of prokaryote cell division is termed binary fission. The prokaryotic chromosome is a single DNA molecule that first replicates, then attaches each copy to a different part of the cell membrane. When the cell begins to pull apart, the replicate and original chromosomes are separated.
Answer:
The earth's gravitational force on the sun is equal to the sun's gravitational force on the earth
Explanation:
Newton's third law (law of action-reaction) states that:
"When an object A exerts a force (called action) on an object B, then object B exerts an equal and opposite force (called reaction) on object A"
In other words, when two objects exert a force on each other, then the magnitude of the two forces is the same (while the directions are opposite).
In this problem, we can call the Sun as "object A" and the Earth as "object B". According to Newton's third law, therefore, we can say that the gravitational force that the Earth exerts on the Sun is equal (in magnitude, and opposite in direction) to the gravitational force that the Sun exerts on the Earth.
Answer:
805m
Explanation:
Speed = displacement/time
Speed = 23m/s
Time = 35s
Displacement = speed × time
= 23 × 35
= 805m
The breaking distance consists of two parts. The first part is the first 0.5 seconds were no breaking occurs. Given values: t time, v₀ initial velocity:
x₁ = v₀*t
The second part occurs after t = 0,5s with the given acceleration: a = - 12 m/s²
were the final velocity is zero, v = 0 and the initial velocity v₀= 16m/s:
v = a*t + v₀ = 0 => v₀ = -a*t => t = v₀/-a
x₂ = 0.5*a*t² = 0.5*v°²/a
The total breaking distance is the sum of the two parts:
x = x₁ + x₂ = v₀* t + 0.5 * v₀² / a = 16 * 0.5 + 0.5 * 16² / 12 = 8 + 10,7 = 18,7
You can use this result to calculate the remaining distance. You can use the last equation to calculate the maximum speed you could have to avoid a collision.
Use x = 39m and solve for v₀.