Answer:
The water level rises more when the cube is located above the raft before submerging.
Explanation:
These kinds of problems are based on the principle of Archimedes, who says that by immersing a body in a volume of water, the initial water level will be increased, raising the water level. That is, the height in the container with water will rise in level. The difference between the new volume and the initial volume of the water will be the volume of the submerged body.
Now we have two moments when the steel cube is held by the raft and when it is at the bottom of the pool.
When the cube is at the bottom of the water we know that the volume will increase, and we can calculate this volume using the volume of the cube.
Vc = 0.45*0.45*0.45 = 0.0911 [m^3]
Now when a body floats it is because a balance is established in the densities, the density of the body and the density of the water.
![Ro_{H2O}=R_{c+r}\\where:\\Ro_{H2O}= water density = 1000 [kg/m^3]\\Ro_{c+r}= combined density cube + raft [kg/m^3]](https://tex.z-dn.net/?f=Ro_%7BH2O%7D%3DR_%7Bc%2Br%7D%5C%5Cwhere%3A%5C%5CRo_%7BH2O%7D%3D%20water%20density%20%3D%201000%20%5Bkg%2Fm%5E3%5D%5C%5CRo_%7Bc%2Br%7D%3D%20combined%20density%20cube%20%2B%20raft%20%5Bkg%2Fm%5E3%5D)
Density is given by:
Ro = m/V
where:
m= mass [kg]
V = volume [m^3]
The buoyancy force can be calculated using the following equation:
![F_{B}=W=Ro_{H20}*g*Vs\\W = (200+730)*9.81\\W=9123.3[N]\\\\9123=1000*9.81*Vs\\Vs = 0.93 [m^3]](https://tex.z-dn.net/?f=F_%7BB%7D%3DW%3DRo_%7BH20%7D%2Ag%2AVs%5C%5CW%20%3D%20%28200%2B730%29%2A9.81%5C%5CW%3D9123.3%5BN%5D%5C%5C%5C%5C9123%3D1000%2A9.81%2AVs%5C%5CVs%20%3D%200.93%20%5Bm%5E3%5D)
Vs > Vc, What it means is that the combined volume of the raft and the cube is greater than that of the cube at the bottom of the pool. Therefore the water level rises more when the cube is located above the raft before submerging.
If you have no idea what the voltage is that you're about to measure,
then you should set the meter to the highest range before you connect
it to the two points in the circuit.
Analog meters indicate the measurement by moving a physical needle
across a physical card with physical numbers printed on it. If the unknown
voltage happens to be 100 times the full range to which the meter is set,
then the needle may find itself trying to move to a position that's 100 times
past the highest number on the meter's face. You'll hear a soft 'twang',
followed by a louder 'CLICK'. Then you'll wonder why the meter has no
needle on it, and then you'll walk over to the other side of the room and
pick up the needle off the floor, and then you'll probably put the needle
in your pocket. That will end your voltage measurements for that day,
and certainly for that meter.
Been there.
Done that.
Every planet/moon has global wind that are mostly determined by the way the planet/moon rotates and how evenly the Sun illuminates it. On the Earth the equator gets much more Sun than the poles. resulting in warmer air at the equator than the poles and creating circulation cells (or "Hadley Cells") which consist of warm air rising over the equator and then moving North and South from it and back round.
The Earth is also rotating. When any solid body rotates, bits of it that are nearer its axis move slower than those which are further away. As you move north (or south) from the equator, you are moving closer to the axis of the Earth and so the air which started at the equator and moved north (or south) will be moving faster than the ground it is over (it has the rotation speed of the ground at the equator, not the ground which is is now over). This results in winds which always move from the west to the east in the mid latitudes.
Answer:
W = 12.96 J
Explanation:
The force acting in the direction of motion of the sand paper is the frictional force. So, we first calculate the frictional force:
F = μR
where,
F = Friction Force = ?
μ = 0.92
R = Normal Force = 2.6 N
Therefore,
F = (0.92)(2.6 N)
F = 2.4 N
Now, the displacement is given as:
d = (0.12 m)(45)
d = 5.4 m
So, the work done will be:
W = F d
W = (2.4 N)(5.4 m)
<u>W = 12.96 J</u>
Answer:
The separation of visible light into its different colors is known as dispersion. It was mentioned in the Light and Color unit that each color is characteristic of a distinct wave frequency; and different frequencies of light waves will bend varying amounts upon passage through a prism
Explanation: