Answer:
d = 0.38 m
Explanation:
As we know that the person due to the airbag action, comes to a complete stop, in 36 msec or less, and during this time, is decelerated at a constant rate of 60 g, we can find the initial velocity (when airbag starts to work), as follows:
vf = v₀ -a*t
If vf = 0, we can solve for v₀:
v₀ = a*t = 60*9.8 m/s²*36*10⁻³s = 21.2 m/s
With the values of v₀, a and t, we can find Δx, applying any kinematic equation that relates all of some of these parameters with the displacement.
Just for simplicity, we can use the following equation:

where vf=0, v₀ =21.2 m/s and a= -588 m/s².
Solving for d:

⇒ d = 0.38 m
Answer:
velocity of the object
Explanation:
For an object moving at a constant acceleration, we would expect to see a position graph with a curved shape and a velocity graph with a straight shape.
Answer:
The mass of the object on the Moon (and anywhere else) is about 30.61kg. Please see more detail below.
Explanation:
Weight is the gravitational force exerted on the object and is a function of mass and gravitational acceleration:
(weight) = (mass) x (gravitational acceleration)
We are to find the mass, knowing the weight on Earth to be 300N:
(mass) = (weight on Earth) / (gravitational acceleration on Earth) = 300N / 9.8 m/s^2 = 30.61 kg
The mass of the object is 30.61kg.
The mass of the object is independent of gravity. Therefore the answer to the question "What is its mass on the Moon" is 30.61kg.
If the question were what is its weight on the Moon, the answer would be
(weight on Moon) = (mass) x (grav.accel. on Moon) = 30.61kg x 1.62 m/s^2 = 49.59N
which is about 1/6 of the object's weight on the Earth.
Answer:
yes done first thing tomorrow