When evaporation occurs liquid absorbs heat from the surroundings to get converted to its vapour form as a result, there is an overall decrease in the heat leading to cooling of the liquid.
Hope that this was helpful :)
Answer:
Explanation:
Formula and givens
- λ = c / f
- λ is the wavelength
- c = the speed of light
- f = the frequency
- c = 3*10^8
- f = 7.89 * 10^14
λ = ?
Solution
λ = 3*10^8 / 7.89*10^14
λ = 3*10^8/7.89*10^14
λ = 2.36 * 10^7
λ = 236 nanometers. What you use as your solution depends on what what you have been taught.
Answer:
a) E = 8628.23 N/C
b) E = 7489.785 N/C
Explanation:
a) Given
R = 5.00 cm = 0.05 m
Q = 3.00 nC = 3*10⁻⁹ C
ε₀ = 8.854*10⁻¹² C²/(N*m²)
r = 4.00 cm = 0.04 m
We can apply the equation
E = Qenc/(ε₀*A) (i)
where
Qenc = (Vr/V)*Q
If Vr = (4/3)*π*r³ and V = (4/3)*π*R³
Vr/V = ((4/3)*π*r³)/((4/3)*π*R³) = r³/R³
then
Qenc = (r³/R³)*Q = ((0.04 m)³/(0.05 m)³)*3*10⁻⁹ C = 1.536*10⁻⁹ C
We get A as follows
A = 4*π*r² = 4*π*(0.04 m)² = 0.02 m²
Using the equation (i)
E = (1.536*10⁻⁹ C)/(8.854*10⁻¹² C²/(N*m²)*0.02 m²)
E = 8628.23 N/C
b) We apply the equation
E = Q/(ε₀*A) (ii)
where
r = 0.06 m
A = 4*π*r² = 4*π*(0.06 m)² = 0.045 m²
Using the equation (ii)
E = (3*10⁻⁹ C)/(8.854*10⁻¹² C²/(N*m²)*0.045 m²)
E = 7489.785 N/C