I would say your answer is B, since Newton's 3rd law is, "For every action, there is an equal and opposite reaction."
It's talking about pairs of actions. Sorry if I'm wrong.
Answer:
Explanation:
net force on the skier = mg sin 39 - μ mg cos39
mg ( sin39 - μ cos39 )
= 73 x 9.8 ( .629 - .116)
= 367 N
impulse = net force x time = change in momentum .
= 367 x 5 = 1835 kg m /s
velocity of the skier after 5 s = 1835 / 73
= 25.13 m /s
b )
net force becomes zero
mg ( sin39 - μ cos39 ) = 0
μ = tan39
= .81
c )
net force becomes zero , so he will continue to go ahead with constant speed of 25.13 m /s
so he will have speed of 25.13 m /s after 5 s .
The electrostatic force between two charges q1 and q2 is given by

where

is the Coulomb's constant and r is the distance between the two charges.
If we use F=19.2 N and q1=q2=-3.0 C, we can find the value of r, the distance between the two charges by re-arranging the previous formula: