The value of Kc for the thermal decomposition of H₂S is 2.2 x 10⁻⁴ at 1400 K:
2 H₂S(g) ↔ 2 H₂(g) + S₂(g)
initial 3.5 M 0 0
at equilibrium 3.5 M - 2x 2x x
Kc = [S₂][H₂]² / [H₂S]²
2.2 X 10⁻⁴ = x(2x)² / (3.5 - 2x)²
2.2 x 10⁻⁴ = 4 x³ / (3.5)² Assuming x <<<<< 3.5
x = 0.088
Thus [H₂S] = 3.324 M
Answer : The energy required to melt 58.3 g of solid n-butane is, 4.66 kJ
Explanation :
First we have to calculate the moles of n-butane.

Given:
Molar mass of n-butane = 58.12 g/mole
Mass of n-butane = 58.3 g
Now put all the given values in the above expression, we get:

Now we have to calculate the energy required.

where,
Q = energy required
= enthalpy of fusion of solid n-butane = 4.66 kJ/mol
n = moles = 1.00 mol
Now put all the given values in the above expression, we get:

Thus, the energy required to melt 58.3 g of solid n-butane is, 4.66 kJ
Answer:
3.8 M
Explanation:
Volume of acid used VA= 57.0 - 37.5 = 19.5 ml
Volume of base used VB= 67.8 - 45.0 = 22.8 ml
Equation of the reaction
2HNO3(aq) + Ca(OH)2(aq) --------> Ca(NO3)2(aq) + 2H2O(l)
Number of moles of acid NA= 2
Number of moles of base NB= 1
Concentration of acid CA= ???
Concentration of base CB= 1.63 M
CAVA/CBVB = NA/NB
CAVANB = CBVBNA
CA= CBVBNA/VANB
CA= 1.63 × 22.8 × 2/ 19.5 × 1
CA= 3.8 M
HENCE THE MOLARITY OF THE ACID IS 3.8 M.