I think the mineral characteristics that the one gram sample of hematite taking up more space than a one gram sample of malachite is DENSITY.
The density of hematite is 5.26 g/cm³
The density of malachite is 3.6 to 4 g/cm³
Other physical characteristics of minerals are <span><span>Color, </span>Streak, Luster, H<span>ardness, </span>Cleavage, Fracture, Tenacity, and Crystal <span>Habit.</span></span>
The stoichiometry of the reaction gives the molar ratio in which the reactants react with each other and the ratio in which products are formed.
The coefficients of the reactants in the reaction follow the stoichiometry
the balanced chemical equation for the reaction is as follows;
2C₃H₆(g) + 9O₂(g) ---> 6CO₂(g) + 6H₂O(l)
The lighter components are able to rise higher in the column before they are cooled to their condensing temperature, allowing them to be removed at slightly higher levels.
I hope this helps
Bonds between carbon and oxygen are more polar than bonds between sulfur and oxygen. nevertheless, sulfur dioxide (SO₂) exhibits a dipole moment while carbon dioxide (CO₂) does not because of the difference in their shape, CO₂ is having linear geometry thus exhibit zero dipole moment while SO₂ is having bent shape thus exhibit dipole moment. So, despite the fact that bonds between carbon and oxygen are more polar than bonds between sulfur and oxygen. nevertheless, sulfur dioxide (SO₂) exhibits a dipole moment while carbon dioxide (CO₂) does not.
Answer: 27.09 ppm and 0.003 %.
First, <u>for air pollutants, ppm refers to parts of steam or gas per million parts of contaminated air, which can be expressed as cm³ / m³. </u>Therefore, we must find the volume of CO that represents 35 mg of this gas at a temperature of -30 ° C and a pressure of 0.92 atm.
Note: we consider 35 mg since this is the acceptable hourly average concentration of CO per cubic meter m³ of contaminated air established in the "National Ambient Air Quality Objectives". The volume of these 35 mg of gas will change according to the atmospheric conditions in which they are.
So, according to the <em>law of ideal gases,</em>
PV = nRT
where P, V, n and T are the pressure, volume, moles and temperature of the gas in question while R is the constant gas (0.082057 atm L / mol K)
The moles of CO will be,
n = 35 mg x
x
→ n = 0.00125 mol
We clear V from the equation and substitute P = 0.92 atm and
T = -30 ° C + 273.15 K = 243.15 K
V = 
→ V = 0.0271 L
As 1000 cm³ = 1 L then,
V = 0.0271 L x
= 27.09 cm³
<u>Then the acceptable concentration </u><u>c</u><u> of CO in ppm is,</u>
c = 27 cm³ / m³ = 27 ppm
<u>To express this concentration in percent by volume </u>we must consider that 1 000 000 cm³ = 1 m³ to convert 27.09 cm³ in m³ and multiply the result by 100%:
c = 27.09
x
x 100%
c = 0.003 %
So, <u>the acceptable concentration of CO if the temperature is -30 °C and pressure is 0.92 atm in ppm and as a percent by volume is </u>27.09 ppm and 0.003 %.