The final velocity of the block A will be 2.5 m/sec. The principal of the momentum conversation is used in the given problem.
<h3>What is the law of conservation of momentum?</h3>
According to the law of conservation of momentum, the momentum of the body before the collision is always equal to the momentum of the body after the collision.
In a given concern, mass m₁ is M, mass m₂ is 3M. Initial speed for the mass m₁ and m₂ will be u₁=5 and u₂=0 m/s respectively,
According to the law of conservation of momentum
Momentum before collision =Momentum after collision
m₁u₁+m₂u₂=(m₁+m₂)v
M×5+3M×0=[M+3M]v
The final velocity is found as;
V=51.25 m/s
The velocity of block A is found as;

Hence, the final velocity of the block A will be 2.5 m/sec.
To learn more about the law of conservation of momentum, refer;
brainly.com/question/1113396
#SPJ4
I don’t know, which statement ahh I see white screen lol
Answer:
D. power
Explanation:
kg represents mass
(m/v)² represents velocity squared
Then kg·m²/s² represents mass·velocity² = <em>kinetic energy</em> or <em>potential energy</em> or <em>work</em>.
kg·m²/s³ will be the <em>rate of doing work</em>, which is power
Explanation:
One way of classifying stars is by their temperature .
or
Science strives to be able to describe how stars and planets form and evolve. This requires theories to describe the processes which include:
Star and planet formation
Star and planet composition
Stellar and solar system evolution
The nuclear processes happening inside stars
The scientific method means that all theories are put to the test. By measuring or calculating the temperature, age and composition of other planets and stars the theories can be tested. If observed values of these parameters are not predicted by theories, then the theories are wrong and need to be revised or replaced.
Electron;Neutron is the correct answer.