Answer:
10 m/s
Explanation:
Momentum before collision = momentum after collision
m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂
(8 kg)(8 m/s) + (6 kg)(6 m/s) = (8 kg)(5 m/s) + (6 kg) v
64 kg m/s + 36 kg m/s = 40 kg m/s + (6 kg) v
60 kg m/s = (6 kg) v
v = 10 m/s
Inertia is a term that qualitatively describes the ability of a substance to resist changes in its state of motion, while mass gives a quantitative value for inertia
Answer:
The doorbell transforms electrical energy into sound.
Explanation:
The doorbell MAY turn electrical energy into motion of a striker which then impacts a resonator creating sound. However all door bells do not have solenoids. Some are electronic playing recordings when activated.
All doorbells do produce sound, though.
Answer:
Mechanical waves require a medium in order to transport their energy from one location to another.
Sound waves are incapable of traveling through a vacuum. Slinky waves, water waves, stadium waves, and jump rope waves are other examples of mechanical waves; each requires some medium in order to exist.
Answer:
F = 3.86 x 10⁻⁶ N
Explanation:
First, we will find the distance between the two particles:

where,
r = distance between the particles = ?
(x₁, y₁, z₁) = (2, 5, 1)
(x₂, y₂, z₂) = (3, 2, 3)
Therefore,

Now, we will calculate the magnitude of the force between the charges by using Coulomb's Law:

where,
F = magnitude of force = ?
k = Coulomb's Constant = 9 x 10⁹ Nm²/C²
q₁ = magnitude of first charge = 2 x 10⁻⁸ C
q₂ = magnitude of second charge = 3 x 10⁻⁷ C
r = distance between the charges = 3.741 m
Therefore,

<u>F = 3.86 x 10⁻⁶ N</u>