<span>The </span>second law of thermodynamics<span> states that the total </span>entropy<span> of an </span>isolated system<span> can never decrease over time. The total entropy can remain constant in ideal cases where the system is in a steady state (</span>equilibrium). For your natural system the correct ansver is <span>B.It will always increase</span>
Answer:
E = 4.83 N/ C
Explanation:
If we have a uniform charge sphere we can use the following formulas to calculate the Electric field due to the charge of the sphere:
: Formula (1) To calculate the electric field in the region outside the sphere r ≥ a
Where:
K: coulomb constant (N*m²/C²)
a: sphere radius (m)
Q: Total sphere charge (C)
r : Distance from the center of the sphere to the region where the electric field is calculated (m)
Equivalences
1nC=10⁻⁹C
1cm= 10⁻²m
Data
k= 9*10⁹ N*m²/C²
Q=4nC=4 *10⁻⁹C
D = 26 cm = 26*10⁻²m = 0.26m
a = D/2 = 0.13m
r= R+a = 2.6 m+ 0.13m = 2.73m
Problem development
Magnitude of the electric field at r = 2.73m from the center of the sphere
r>a , We apply the Formula (1) :


E= 4.83 N/ C
Answer:

Explanation:
Since we know that two sphere is oppositely charged so net electric field at the mid point of two balls will be sum of the electric field due to each ball at the mid point
So we know that

here we know that



so we have

