Answer:
The magnitude of the average drag force is 2412.34 N.
Explanation:
Given that,
Mass of car ![m=8.10\times10^{-3}\ kg](https://tex.z-dn.net/?f=m%3D8.10%5Ctimes10%5E%7B-3%7D%5C%20kg)
Velocity v = 25.8 m/s
Distance ![d= 3.90\times10^{2}](https://tex.z-dn.net/?f=d%3D%203.90%5Ctimes10%5E%7B2%7D)
Speed of car = 13.1 m/s
Height = 12.5 m
We need to calculate the magnitude of the average drag force
Using equation kinetic energy
![K.E_{i}=K.E_{f}+P.E+F_{d}](https://tex.z-dn.net/?f=K.E_%7Bi%7D%3DK.E_%7Bf%7D%2BP.E%2BF_%7Bd%7D)
![\dfrac{1}{2}mv_{i}^2=\dfrac{}{}mv_{f}^2+mgh+F\times d](https://tex.z-dn.net/?f=%5Cdfrac%7B1%7D%7B2%7Dmv_%7Bi%7D%5E2%3D%5Cdfrac%7B%7D%7B%7Dmv_%7Bf%7D%5E2%2Bmgh%2BF%5Ctimes%20d)
Where,
= initial velocity
= final velocity
h = height
g = acceleration due to gravity
=drag force
m = mass of the car
d = distance
Put the value into the formula
![\dfrac{1}{2}\times8.10\times10^{3}\times25.8=\dfrac{1}{2}\times8.10\times10^{3}\times13.1+8.10\times10^{3}\times9.8\times12.5+F\times3.90\times10^{2}](https://tex.z-dn.net/?f=%5Cdfrac%7B1%7D%7B2%7D%5Ctimes8.10%5Ctimes10%5E%7B3%7D%5Ctimes25.8%3D%5Cdfrac%7B1%7D%7B2%7D%5Ctimes8.10%5Ctimes10%5E%7B3%7D%5Ctimes13.1%2B8.10%5Ctimes10%5E%7B3%7D%5Ctimes9.8%5Ctimes12.5%2BF%5Ctimes3.90%5Ctimes10%5E%7B2%7D)
![F=\dfrac{\dfrac{1}{2}\times8.10\times10^{3}\times25.8-\dfrac{1}{2}\times8.10\times10^{3}\times13.1-8.10\times10^{3}\times9.8\times12.5}{3.90\times10^{2}}](https://tex.z-dn.net/?f=F%3D%5Cdfrac%7B%5Cdfrac%7B1%7D%7B2%7D%5Ctimes8.10%5Ctimes10%5E%7B3%7D%5Ctimes25.8-%5Cdfrac%7B1%7D%7B2%7D%5Ctimes8.10%5Ctimes10%5E%7B3%7D%5Ctimes13.1-8.10%5Ctimes10%5E%7B3%7D%5Ctimes9.8%5Ctimes12.5%7D%7B3.90%5Ctimes10%5E%7B2%7D%7D)
![F=-2412.34\ N](https://tex.z-dn.net/?f=F%3D-2412.34%5C%20N)
![|F|=2412.34\ N](https://tex.z-dn.net/?f=%7CF%7C%3D2412.34%5C%20N)
Hence, The magnitude of the average drag force is 2412.34 N.