<span>Formula for the compound nitrogen monoxide is NO.
Below is the structure:</span>
Atoms form chemical bonds to make their outer electron shells more stable. ... An ionic bond, where one atom essentially donates an electron to another, forms when one atom becomes stable by losing its outer electrons and the other atoms become stable (usually by filling its valence shell) by gaining the electrons.
Answer:
Light
Explanation:
The discovery of light from the other side of a black hole was predicted by Einstein's theory of general relativity. ... The research began with a slightly different aim of a more common light formed by a black hole: the corona which wraps around the outside of it, formed as material falls in.
Answer:
The answer to your question is given below.
Explanation:
Potassium (K) has 19 electrons with electronic configuration of 2, 8, 8, 1.
Fluorine (F) has 9 electrons with electronic configuration of 2, 7.
Fluorine needs 1 electron to complete it's octet configuration.
Hence, potassium (K), will lose 1 electron to fluorine (F) to form potassium ion (K+) with electronic configuration of 2, 8, 8. The fluorine atom (F) will receive the 1 electron from potassium to form the fluoride ion (F-) with electronic configuration of 2, 8.
**** Please see attached photo for further details.
Answer:
CH3CH2NH3+/CH3CH2NH2 would have the largest pKa
Explanation:
To answer this question we must know Kb of CH3CH2NH2 is 5.6x10⁻⁴, and for C6H5NH2 is 4.0x10⁻¹⁰. And the CH3CH2NH3+ and C6H5NH3+ are related with these substances because are their conjugate base. That means:
pKa of CH3CH2NH3+ = CH3CH2NH2; C6H5NH3+ = C6H5NH2
Also, Kw / Kb = Ka
Thus:
pKa of CH3CH2NH3+/CH3CH2NH2 is:
Kw / kb = Ka = 1.79x10⁻¹¹
-log Ka = pKa
pKa = 10.75
pKa of C6H5NH3+/ C6H5NH2 is:
Kw / kb = Ka = 2.5x10⁻⁵
-log Ka = pKa
pKa = 4.6
That means CH3CH2NH3+/CH3CH2NH2 would have the largest pKa