Answer:
(a)
, 
(b) When
, object is slowing down, when
object is speeding up.
Explanation:
(a) To get the velocity function, we need to take the derivative of the position function.

To get the acceleration function, we need to take the derivative of the velocity function.

(b) The object is slowing down when velocity is decreasing by time (decelerating) hence a < 0

On the other hand, object is speeding up when a > 0

Therefore, when
, object is slowing down, when
object is speeding up.
Answer: the average position of all the parts of the system, weighted according to their masses.
Explanation:
Answer:
To establish this relationship we must examine the potentials that these forces create. The electrical potential is described by
Ve = k q / r
The potential for strong nuclear force is
Vn (r) = - gs / 4pir exp (-mrc / h)
Where gs is the stacking constant and r the distance between the nucleons,
We can compare these potentials where the force is derived from the relationship
E = -dU / dr
F = q E
Explanation:
It reaches 10 or 20 million degrees kelvin but it can get as high as 10 million degrees kelvin