Answer:
A) 3.13 m/s
B) 5.34 N
C) W = 26.9 J
Explanation:
We are told that the position as a function of time is given by;
x(t) = αt² + βt³
Where;
α = 0.210 m/s² and β = 2.04×10^(−2) m/s³ = 0.0204 m/s³
Thus;
x(t) = 0.21t² + 0.0204t³
A) Velocity is gotten from the derivative of the displacement.
Thus;
v(t) = x'(t) = 2(0.21t) + 3(0.0204t²)
v(t) = 0.42t + 0.0612t²
v(4.5) = 0.42(4.5) + 0.0612(4.5)²
v(4.5) = 3.1293 m/s ≈ 3.13 m/s
B) acceleration is gotten from the derivative of the velocity
a(t) = v'(t) = 0.42 + 2(0.0612t)
a(4.5) = 0.42 + 2(0.0612 × 4.5)
a(4.5) = 0.9708 m/s²
Force = ma = 5.5 × 0.9708
F = 5.3394 N ≈ 5.34 N
C) Since no friction, work done is kinetic energy.
Thus;
W = ½mv²
W = ½ × 5.5 × 3.1293²
W = 26.9 J
Answer:
Option D
Explanation:
<u><em>Given:</em></u>
Mass = m = 110 kg
Acceleration due to gravity = g = 9.8 m/s
<u><em>Required:</em></u>
Weight = W = ?
<u><em>Formula</em></u>
W = mg
<u><em>Solution:</em></u>
W = (110)(9.8)
W = 1078 N
Maunder minimum is related to climate due to the unusually low sunspot activity correlates to
unusually cold climatic events. The answer is letter A. It happened
around 1645 and 1715 and also coincided with the phenomena ‘Little Ice Age’
(1500 – 1850) in the Northern Hemisphere.
Newton’s first law is motion. For example, an object at rest stays at rest and an object in motion stays in motion with the same speed and in the same direction unless acted upon by an unbalanced force.