Answer:
A. 4,9 m/s2
B. 2,0 m/s2
C. 120 N
Explanation:
In the image, 1 is going to represent the monkey and 2 is going to be the package. Let a_mín be the minimum acceleration that the monkey should have in the upward direction, so the package is barely lifted. Apply Newton’s second law of motion:

If the package is barely lifted, that means that T=m_2*g; then:

Solving the equation for a_mín, we have:

Once the monkey stops its climb and holds onto the rope, we set the equation of Newton’s second law as it follows:
For the monkey: 
For the package: 
The acceleration a is the same for both monkey and package, but have opposite directions, this means that when the monkey accelerates upwards, the package does it downwards and vice versa. Therefore, the acceleration a on the equation for the package is negative; however, if we invert the signs on the sum of forces, it has the same effect. To be clearer:
For the package: 
We have two unknowns and two equations, so we can proceed. We can match both tensions and have:

Solving a, we have

We can then replace this value of a in one for the sums of force and find the tension T:

The process you're fishing for is "polarization", but that's a
misleading description.
Polarization doesn't do anything to change the light waves.
It simply filters out (absorbs, as with a polarizing filter) the
light waves that aren't vibrating in the desired plane, and
allows only those that are to pass.
The intensity of a light beam is always reduced after
polarizing it, because much (most) of the original light
has been removed.
A laser light source may be thought of as an exception,
since everything coming out of the laser is polarized.
No. Terrance cannot move the sled. This is because, the force that he produces is 80*3 Newton’s, which is only 240 Newton’s, but since the sled needs a force of 250 Newton’s, he cannot move the sled (even though the difference is only by 10 Newton’s).
To solve this problem it is necessary to apply the concepts related to the conservation of the Gravitational Force and the centripetal force by equilibrium,


Where,
m = Mass of spacecraft
M = Mass of Earth
r = Radius (Orbit)
G = Gravitational Universal Music
v = Velocity
Re-arrange to find the velocity



PART A ) The radius of the spacecraft's orbit is 2 times the radius of the earth, that is, considering the center of the earth, the spacecraft is 3 times at that distance. Replacing then,


From the speed it is possible to use find the formula, so



Therefore the orbital period of the spacecraft is 2 hours and 24 minutes.
PART B) To find the kinetic energy we simply apply the definition of kinetic energy on the ship, which is



Therefore the kinetic energy of the Spacecraft is 1.04 Gigajules.
Answer:
The workdone is
Explanation:
From the question we are told that
The potential difference is 
Generally the charge on
is 
Generally the workdone is mathematically represented as

=>
=>