I have no idea I need the answer too
The velocity of the stuntman, once he has left the cannon is 5 m/s.
The right option is O A. 5 m/s
The Kinetic energy of the stuntman is equal to the elastic potential energy of the spring.
<h3 /><h3>Velocity: </h3>
This is the ratio of displacement to time. The S.I unit of Velocity is m/s. The velocity of the stuntman can be calculated using the formula below.
⇒ Formula:
- mv²/2 = ke²/2
- mv² = ke².................. Equation 1
⇒ Where:
- m = mass of the stuntman
- v = velocity of the stuntman
- k = force constant of the spring
- e = compression of the spring
⇒ Make v the subject of the equation
- v = √(ke²/m)................. Equation 2
From the question,
⇒ Given:
- m = 48 kg
- k = 75 N/m
- e = 4 m
⇒ Substitute these values into equation 2
- v = √[(75×4²)/48]
- v = √25
- v = 5 m/s.
Hence, The velocity of the stuntman, once he has left the cannon is 5 m/s.
The right option is O A. 5 m/s
Learn more about velocity here: brainly.com/question/10962624
Answer:
I am pretty sure its the second one but I could be wrong sorry if I am.
Explanation:
:D
Yes, yes, we know all of that. It certainly took you long enough to
get around to asking your question.
If
a = (14, 10.5, 0)
and
b = (4.62, 9.45, 0) ,
then, to begin with, neither vector has a z-component, and they
both lie in the x-y plane.
Their dot-product a · b = (14 x 4.62) + (10.5 x 9.45) =
(64.68) + (99.225) = 163.905 (scalar)
I feel I earned your generous 5 points just reading your treatise and
finding your question (in the last line). I shall cherish every one of them.
Answer:
A
Explanation:
The greatest concentration of atomic mass is in the nucleus because it is made up of protons and neutrons. The electrons surrounding the nucleus don't have as much mass as protons or neutrons.
Hopefully this helps...