Answer: The correct answer is option B.
Explanation:
Mass of the sled = 10 kg
Initial speed of the sled = 2 m/s
Kinetic energy of the sled = 

Work done by the sled = 20 joules
The work done by the friction will be in opposite direction and equal to the magnitude of the work done of the sled that - 20 J.
Hence, correct answer is option B.
Ok i apologise for the messy working but I'll try and explain my attempt at logic
Also note i ignore any air resistance for this.
First i wrote the two equations I'd most likely need for this situation, the kinetic energy equation and the potential energy equation.
Because the energy right at the top of the swing motion is equal to the energy right in the "bottom" of the swing's motion (due to conservation of energy), i made the kinetic energy equal to the potential energy as indicated by Ek = Ep.
I also noted the "initial" and "final" height of the swing with hi and hf respectively.
So initially looking at this i thought, what the heck, there's no mass. Then i figured that using the conservation of energy law i could take the mass value from the Ek equation and use it in the Ep equation. So what i did was take the Ek equation and rearranged it for m as you can hopefully see. Then i substituted the rearranged Ek equation into the Ep equation.
So then the equation reads something like Ep = (rearranged Ek equation for m) × g (which is -9.81) × change in height (hf - hi).
Then i simplify the equation a little. When i multiply both sides by v^2 i can clearly see that there is one E on each side (at that stage i don't need to clarify which type of energy it is because Ek = Ep so they're just the same anyway). So i just canceled them out and square rooted both sides.
The answer i got was that the max velocity would be 4.85m/s 3sf, assuming no losses (eg energy lost to friction).
I do hope I'm right and i suppose it's better than a blank piece of paper good luck my dude xx
Answer:
Option c. (Both Technician A and B are correct)
Explanation:
A transmission system consists of 3 shafts. The input shaft, the counter shaft, and the main shaft. The clutch gear always rotates with input shaft and is a crucial element of the input shaft.
The counter shaft is actually several gears machined out of a single piece of steel. The counter shaft may also be called counter gear or cluster gear. It is a secondary shaft that runs parallel to the mainshaft in a gearbox and is used to provide powers to machine components such as the drive axle.
The main gears (also called the speed gears) on main shaft (also known as the output shaft) are used to transfer rotation from counter shaft to the output shaft.
Hence in the light of above description, both technician A and B are correct.
Yes,and because not everyone can wink and often that someone can only wink with one eye only
Decreasing the trains velocity will DECREASE the kinetic energy