The black squirrel has zero kinetic energy (if it's not moving) and lower gravitational potential energy than the red squirrel or zero gravitational potential energy if the ground is assumed to be zero gravitational potential line.
Answer:
A) Although the speed is the same, the direction has changed. Therefore, the velocity has changed.
Explanation:
Answer:
t = 0.85[s]
Explanation:
To solve this problem we must make a complete description of this. By doing an internet search, we find the description of this problem as if of the question.
<u>Description</u>
<u />
"An alligator swims to the left with a constant velocity of 5 m s when the alligator season a bird straight ahead the alligator speeds up with a constant acceleration of 3 m/s^2 leftward until it reaches a final velocity of 35 Ms left work how many seconds does it take the alligator to speed up from 5 m/s to 35 m/s".
To solve this problem we must identify the initial data:
v0 = initial velocity = 5 [m/s]
a = acceleration = 3 [m/s^2]
vf = final velocity = 35[m/s]
t = time = ?
Using the following kinematic equation, we can find the time that is required.
![v_{f}=v_{0}+a*t\\35=5+35*t\\t=\frac{35-5}{35} \\t=0.85[s]](https://tex.z-dn.net/?f=v_%7Bf%7D%3Dv_%7B0%7D%2Ba%2At%5C%5C35%3D5%2B35%2At%5C%5Ct%3D%5Cfrac%7B35-5%7D%7B35%7D%20%5C%5Ct%3D0.85%5Bs%5D)