Answer:
A precipate is a solid while an aqueous solution is liquid.
Explanation:
A precipitate is a solid which separates after a chemical reaction occurs. It is the solid product of the reaction.
An aqueous solution is formed when a substance is dissolved in water.
Water vapor has more energy because it is a gas :)
<u>Answer:</u> The boiling point of solution is 100.53
<u>Explanation:</u>
We are given:
8.00 wt % of CsCl
This means that 8.00 grams of CsCl is present in 100 grams of solution
Mass of solvent = (100 - 8) g = 92 grams
The equation used to calculate elevation in boiling point follows:

To calculate the elevation in boiling point, we use the equation:

Or,

where,
Boiling point of pure solution = 100°C
i = Vant hoff factor = 2 (For CsCl)
= molal boiling point elevation constant = 0.51°C/m
= Given mass of solute (CsCl) = 8.00 g
= Molar mass of solute (CsCl) = 168.4 g/mol
= Mass of solvent (water) = 92 g
Putting values in above equation, we get:

Hence, the boiling point of solution is 100.53
The concentration of the Nitric acid solution : 0.114 M
<h3>Further explanation </h3>
Titration is a procedure for determining the concentration of a solution (analyte) by reacting with another solution whose known concentration (usually a standard solution) is called the titrant. Determination of the endpoint/equivalence point of the reaction can use indicators according to the appropriate pH range
Titrations can be acid-base titration, depositional titration, and redox titration. An acid-base titration is the principle of neutralization of acids and bases
Reaction
HNO₃ + NaOH → NaNO₃ + H₂O
Concentration a standard solution of sodium hydroxide : 0.0998 mol/dm³ , and the volume = 25 cm³
moles NaOH=

<em>From the equation, mol ratio HNO₃ : NaOH = 1 : 1, so mol HNO₃ = mol NaOH=</em><em>2.495 mlmoles</em>
<em></em>
The volume of HNO₃ = 21.8 cm³, so the concentration :

Answer:
A non-polar liquid.
Explanation:
Whether a substance dissolves quickly or not depends on how strongly the molecules (or atoms of an element) of a substance are attracted to one another. These interactions between atoms and/or molecules are called intermolecular forces, or IMFs for short. There are several different ones, and these are distinguished from <em>intra</em>molecular forces which are the bonds holding atoms in the molecule together. Attached is a nice little summary of these forces to consider. Our decision lies within the fact that we must pick the substance that experiences the strongest IMF (the one with the most energy). As it turns out, a dipole in a molecule confers some charge distribution on the molecule which makes slightly positive and negative ends. These can attract each other, and it's called dipole-dipole interactions. It can technically happen in a mixture, but let's assume we're dealing with pure substances. Dipoles can only form in polar compounds however, so a non-polar liquid (which is composed of non-polar molecules), will lack these dipoles and therefore cannot form dipole-dipole interactions between the molecules. This results in only having something called dispersion forces (which really every molecule attraction has - so this is the only one). It is very weak, and since the attraction between these molecules is weak, they will tend to come apart, and evaporate. You can think of the IMFs like glue, and a weak glue will not hold the molecules together well, and they will evaporate away.
On the other hand, polar (from dipole interactions) compounds can have general dipole-dipole interactions or hydrogen-bonding interactions (which is a special type of dipole-dipole interaction). H-bonding requires a Hydrogen bonded to either a Nitrogen, Oxygen, or Fluorine to do this. The main thing, is the non-polar ones don't have a dipole, and so they can't form a good intermolecular bond and evaporate quickly.
Water can H-bond, which is why it takes so long to dry and for it to evaporate in general. Nail polish, which is really a solution of acetone, has considerably weaker dipole-dipole bonds (compared to H-bonds), and evaporates quicker than water. Hope this helps!
Note: Figure taken from Chemistry: The Molecular Nature of Matter and Change 8th edition.