0.0821 L-atm/mol-K
8.314 kPa-L/mol-K
Answer:
The answer to your question is: b
Explanation:
a. Magnesium shares an electron somewhat unevenly from its 3s orbital with the 3p orbital of chlorine producing a mildly polar covalent bond. This option is wrong because Mg does not share electrons it loses electrons.
b. Magnesium loses and electron from the 3s and gives it up to the 3p of chlorine producing an ionic bond. This option is correct, Mg loses one electron and Cl receives it, the bond formed between Mg and Cl is ionic.
c. Magnesium does not react chemically with chlorine because magnesium gives up electrons, but chlorine only shares electrons. This answer is wrong, Mg and Cl react and produce MgCl₂.
d. Magnesium shares an electron from the 3s orbital with the 3p orbital of chlorine producing a covalent bond. Mg does not share electrons and is not able to produce covalent bonds.
Answer: (i) F = 2
(ii) F = 3
(iii) F = 2
Explanation:
We would be applying the famous Gibbs Phase Rule to explaining this problem;
By applying the formula;
F+P = C +2
Where P = this represent the phase
F = this is called the degree of freedom
C = this represent the component in the system
Ok let us begin;
(i). from this we can see that there are 2 components i.e. (water + ethanol) and the phase in question is a vapor phase + liquid phase.
So from the formula;
F = C-P+2
F = 2 – 2 + 2 = 2
Therefore, F = 2.
(ii). Also, from the statement, we can figure there are 3 components, while the phases are two like the previous one above, i.e. liquid + vapor
F = 3 – 2 + 2 = 5 – 2 = 3
F = 3
(iii). From this statement, we can figure there are 3 components, and the phases are 3 i.e. (2 liquid phases + 1 vapor phase)
From the formula;
F = 3 – 3 + 2 = 0 + 2
F = 2
Answer:
Order of increasing strength of intermolecular attraction:
>
>
> Ar
Explanation:
can form hydrogen bond as H atom is attached with electronegative atom O.
Rest three,
,
, Ar are non-polar molecules.
In non-polar molecules, van der Waal's intermolecular forces of attractions exist. Hydrogen bonding is stronger intermolecular attraction then van der Waal's intermolecular forces of attraction, hence,
has strongest intermolecular attractions.
Ar will have least intermolecular attraction, as it behaves almost as ideal gas and there is no intermolecular attraction exist between molecules of ideal gases.
Molecular size and mass of
is high as compared to
.
van der Waals intermolecular forces of attraction increases with increase in size.
Therefore,
Order of increasing strength of intermolecular attraction will be:
>
>
> Ar
"High temperatures make the gas molecules move more quickly" is the one sentence among all the choices given in the question that most likely explains why this reaction is carried out at high temperature. The correct option among all the options that are given in the question is the third option or option "C".